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CETMA: an overview

CETMA

CETMA - Centro di Progettazione, Design & Tecnologie dei Materiali

CETMA is a consortium of public research agencies and private industrial companies.

It carries out applied research activities on materials, processes and methodologies towards the

development of innovative products for industry and services sectors.

Within the Departments of Materials and Structures Engineering, some specific research and innovation

activities on SMART Materials are in progress.
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Introduction -
CETMA

The demand on new materials for engineering applications, where the need of high
performances is accompanied by the request of limited weights, implies the development

of innovative “smart”, “multifunctional”, and “adaptive” materials.
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Introduction CETMA

Among the “smart” materials, the most common are:

» Piezoelectric materials produce a voltage when stress is applied, and this effect
can also by applied in the reverse manner (a voltage produces stress).

» Shape memory alloys are thermoresponsive materials where deformation can be
Induced and recovered through temperature changes.

 FBG sensors are strain sensitive materials where induced deformations result in
variation of signal wavelength.

The main reasons of the success for these materials are their high specific
properties and the possibility to shape them as very thin wires and laminas.
Other “smart” materials that are currently studied are: magnetic shape memory
(alloys that change their shape if an external magnetic field is applied), pH-
sensitive polymers (materials which swell/collapse when the ph changes),
temperature responsive polymers, etc.
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Piezoelectric materials

Vi ?e?.fu' e

piezoceramic

1S

QU — Y

Y
.‘I\
pg

0,
.

Electrical Source

Elearical Current Off Electrical Current On

Center of ltage applied to
positive charge ezoelectric material

Center of
negative charge

1. The piezoelectric effect causes crystal materials like quartz to generate an electric charge when the crystal mate-
rial is compressed, twisted, or pulled. The reverse also is true, as the crystal material compresses or expands when
an electric voltage is applied.
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Superelastic Shape Memory Alloys (SMAS)

Weight Percent Nickel
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Optic fibre sensors
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Comparison between piezoelectric (PZT) and shape memory
alloy (SMA) materials.
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SMART composites are generally obtained by integrating materials with actuating
and sensing properties, or with high specific mechanical properties.

Increase of
damage tolerance

Increase of
damping properties
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SMART Composite Materials and Components

The main issues are related to the integration in terms of :
-Embedding

Smog GFRP patch
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SMART Composite Materials and Components pressure  Heat/Cool
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Introduction

SMART Composite Materials and Components
The main issues are related to the integration in terms of :
-Embedding
-Forming technologies compliant with the new materials

-Experimental verification of performances
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SMART Composite Materials and Components

The main issues are related to the integration in terms of :

-Embedding ) | 2 it
-Forming technologies compliant with the new materials —’(‘ 5__,3 /))))))))_ ' \ﬂ;)_’
-Experimental verification of performances R
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-Design and prediction of performances and functionalities
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SMART composites with higher damage tolerance CE'{MA

Hybrid composite laminates with higher damage tolerance
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The influence of SMA hybridization was studied by analyzing the change of the Force-time

curve during “Falling Dart” Impact test, and by using non-destructive technique for damage
inspection (Visual Inspection, thermography, shearometry, etc).
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SMART composites with higher damage tolerance CE"MA

Experimental activities for high impact absorbing materials:

Several laminates have been produced varying:

- Reinforcing fibres (carbon and glass fibres, woven or multiaxial fabrics)
- Type of SMA wires (superelastic, Martensitic, ...)

- Resin system (thermoset and thermoplastic matrices)

- Lamination sequence of SMA wires (SMA wires volume content, flexural
Inertia, pre-stressed wires)

- Textile hybridization techniques (integration of SMA wires within reinforcing
fabric, placement within the laminate)
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Experimental activities: single impact tests

Force-Displacement curves
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Experimental activities: single impact tests

A significant influence of SMA hybridisation in decreasing the extension of the
damaged area was observed by means of visual inspection.
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Experimental activities: single impact tests

A significant decrease of damage was observed by means of thermographic inspection.
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Thermograms of both standard and hybrid samples impacted with energy levels
equal to 10 J (a) and 30 J (b).

Vi ?e?.fu' e




SMART composites with higher damage tolerance CE'{MA
&=

Experimental activities: single impact tests
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SMART composites with higher damage tolerance CE'{MA
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Experimental activities: repeated impacts tests

A significant increase was observed for hybrid samples.
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SMART composites with higher damage tolerance CE'{MA

Experimental activities: repeated impacts tests

A S|n|f|cant increase was observed for hybrid samples.
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SMART composites with higher damping properties g g=—=,
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Experimental activities for high damping laminates: laser vibrometry
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By measuring the vibration modes of a clamped cantilever, the influences of both SMA
wires (martensitic and superelastic) on the vibration characteristics of the laminated
plates were evaluated.
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Experimental activities for high damping laminates: laser vibrometry

In both cases a significant increase of damping was observed for hybrid laminates
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SMART composites with higher damping properties l.'Er/AlA
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SMART composites with sensing capacity

CETMA
-
Embedding FBG sensors within composite laminates

Structural health monitoring wusing sensors embedded in reinforcing
components.
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SMART composites with sensing capacity

CETMA

SMART Sensors

Sensors calibration by mechanical characterization and metrological validation
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SMART composites with sensing capacity
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SMART Sensors

Sensors calibration by mechanical characterization and metrological validation
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Experlmental actlvmes remote structural health monitoring
Local Monitoring System (LMS)
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Experimental activities: remote structural health monitoring
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SMART composites with actuating capacity
LCETMA

The capability of SMAs to recover their original shape when heating after large deformation was
exploited to obtain hybrid composites with morphing capacities.
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electrical insulation

= Electrical connector with insulation

Figure 8. Schematic cross section of the active sandwich panel.

Figure 9. MFCs embedded in core material before covering with UD Figure 10. Hlectrical contact of MECs through the: sandwich.

CFRP.

otgitdizial presoclectnic effect along the lergth of the fibets

Figure 13. Active wing with deactivated and activated MFCs m air flow.

Active wing design with integrated flight control using piezoelectric macro fiber composites
Rolf Paradies and Paolo Ciresa

Smart Mater. Struct. 18 (2009) 035010 (9pp)
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Conclusion CHMA

The use of SMA wires within a composite materials helped in gaining
-Enhanced impact properties

-Enhanced damage tolerance in the case of low energy impacts
-Enhanced vibration damping capacity

-Realization of composites with actuating function
Main issues are:

-Optimization of the design of the hybrid composite material

-Hybridization of structures and semifinished products
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