Compositi Expo Congress Modena 2010

Welcome to the presentation

"Requirements on matrix for the use in gliders and small aircraft"

Sika – a swiss company

founded 1910 by Kaspar Winkler

First success: electrification of the Gotthard road tunnel due to Mr. Kaspar Winklers special mortar with sealing properties

Sika Deutschland GmbH

The Sika group corporation: A Global-Player

worldwide in more than 70 countries with a net of 90 own companies

Netto-turnover 2008: Mio CHF 4.600

700 employees in research & development department

Professional competence for polyurethan- and epoxid-resins

More than 13.000 employees are responsible for a good customer relationsship and for the success of all partners.

Sika Deutschland GmbH

The Business Unit Tooling & Composites intra Sika-group corporation

All corefunctions are located in Bad Urach / Germany for a fast and competent realization of **customized projects**: R&D, manufacturing, quality management, marketing and sales department.

Sika Deutschland GmbH

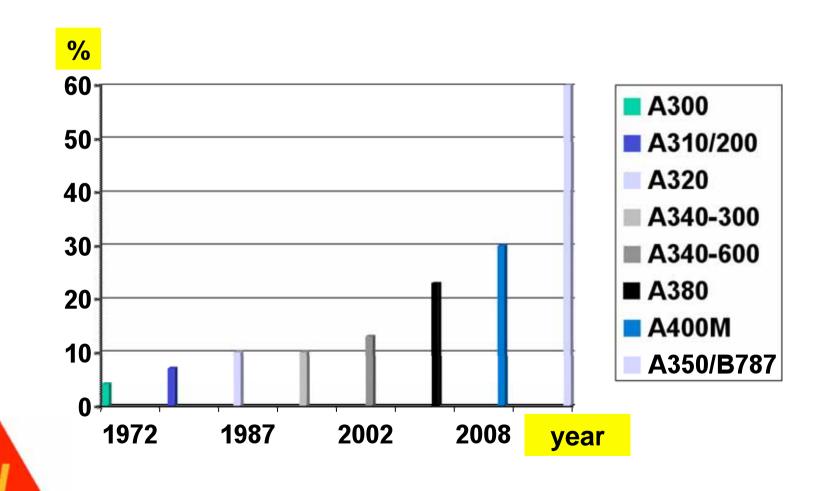
Sika Tooling & Composites – our coremarkets

design, styling & cubing

large modelmaking

foundry modelmaking

rapid tooling



rapid prototyping

special taylormade solutions

Development of using CRP for structural parts in Airliners

Requirements on EP- matrix for the use in gliders and small aircrafts

Main Topics:

- 1. Technical demands:
 - 1.1 mechanical properties
 - 1.2 thermal properties
 - 1.3 chemical resistance
 - 1.4 processing and working properties
- 2. Commercial demands
- 3. Environmental and toxicological demands
- 4. Overview on Sika solutions according to the different requirements in approvals for gliders, motorgliders, motorplanes and business jets.

- 1.1 Mechanical properties
 - structural parts
 - non structural parts
 - interior parts
- 1.2 Thermal properties
 - operation conditions
 - white or darkly painted surfaces
 - flame retardant
- 1.3 Chemical resistance
 - against brake fluid
 - against hydraulic oil
 - against cooling water

Sika Deutschland GmbH

- 1.4 Processing and working properties
 - hand lay-up
 - hand lay-up with vacuum bagging
 - vacuum infusion
 - automatically machined impregnation

Wet lay-up

Hand lay-up with vacuum bagging

Vakuum-Infusion

Automatically machined impregnation

- 2. commercial demands
 - choosing the right processing according to the estimated number of aircrafts
 - choosing the right material out of standard products or customized solutions

- 3. Environmental and toxicological demands
 - low allergical potential
 - free of styrene
 - non toxic classification

- 4. Overview on Sika solutions according to the different requirements in approvals for gliders, motorgliders, motorplanes and business jets
 - Biresin®CR122
 - Biresin®CR132
 - further tailor-made solutions

Biresin® CR122 – EP System for High Flyers!

- Tg ~120°C
- For processing by wet-lay-up and fully automatic laminating machines
- System with 3 hardeners
- Approved and released according RHV by German Luftfahrt Bundesamt for manufacturing of gliders and motorgliders with the hardeners Biresin CH122-3 and CH122-5
- Possible demoulding after RT curing due to very low brittleness
- Uniform mixing ratio 100:30
- Potlife depends on hardener: 30 min 3 h
- Good UV resistance
- Nontoxic classification / Good physiological behaviour
- Germanischer Lloyd approval with Biresin CH122-3 and CH122-5 hardener

Biresin® CR122 – EP System for High Flyers!

Physical Data		Hardener	
Individual Components			Biresin® CH122-5
mPas	850	15	15
g/ml	1.17	0.94	0.93
in parts by weight	100	30	
		Mixture	
Potlife, 100 g / RT, approx. values		150	190
	mPas	370	380
	g/ml	g/ml 1.17 in parts by weight 100 min	Biresin® CR122 Biresin® CH122-3 mPas 850 15 g/ml 1.17 0.94 in parts by weight 100 3 Mix min 150

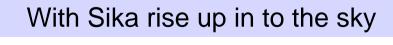
Thermal data of neat resin specimen at different post curing conditions					
Biresin® CR122 resin	with hardener Biresin®	CH122-3	CH122-5		
Post curing condition	S		7		
Glass transition temperature 8 h / 55°C	ISO 11357 °C	78	79		
12 h / 60°C	ISO 11357 °C	82	84		
12 h / 120°C	ISO 11357 °C	114	119		

Biresin® CR122 – EP System for High Flyers!

New hardener – for quick repairs and smaller pieces (not LBA approved)

Physical Data		Resin	Hardener		
Individual Components		Biresin® CR122	Biresin® CH122-1		
Viscosity, 25°C	mPas	850	< 10		
Density, 25°C	g/ml	1.17	0.95		
Mixing ratio	in parts by weight	100	30		
		Mixture			
Potlife, 100 g / RT, approx. values	min	30			
Mixed viscosity, 25°C, approx. values	mPas	310			

Thermal data of neat resin specimen	i e		
Biresin® CR122 resin			with Biresin® CH122-1 hardener
Heat distortion temperature	ISO 75B	°C	101*
	ISO 75C	°C	89*
Glass transition temperature	ISO 11357	°C	103*


* values after post curing: 8 h / 100°C

Approvals for Resins

Approval and recommendation according RHV by
German Luftfahrt Bundesamt required for manufacturing of gliders and motorgliders is possible

Approvals for Resins

- RHV-recommendation

 (LBA approval / certficiation)

 <u>Ri</u>chtlinie zur Führung und Anerkennung von

 <u>H</u>arz-Faser-<u>V</u>erbunden im Anwendungsbereich der Herstellung und
 Instandhaltung von Segelflugzeugen/Motorseglern
- RHV is the LBA guideline (LBA = german aerospace authority) to test reinforced plastic materials to manufacture gliders and motorgliders according the design and construction rules *PART 22*

Part 22: the design and construction rules for gliders and motorgliders define the demands to mechanical properties, heat destortion etc.

Approvals for Resins

- The RHV approval is also useful for light aircraft
- PART 23 + PART 25 regulations is required for motorplanes and business jets
- All approvals according to PART 23 + PART 25 must be carried out on each individual approved aircraft. PART23 + PART 25 is not approving a single Composite product.

Part 25: approval for bigger commercial aircraft

- Part 23: the design and construction rules for normal, utilility, aerobatic and commuter aeroplanes.

Biresin® CR132 – especially for dark painted surfaces

- ■Tg ~135°C
- For processing by wet-lay-up and fully automatic laminating machines
- For high thermal loads due to strong solar heating especially on dark painted surfaces
- System with 3 hardeners for different potlifes and properties
- Potlife depends on hardener: 60 min 3,5 h
- Nontoxic classification / Good physiological behaviour

Biresin® CR132 – especially for dark painted surfaces

Physical Data		Resin	Hardener		
Individual Components		Biresin® CR132	Biresin® CH132-2	Biresin® CH132-5	Biresin® CH132-7
Viscosity, 25°C	mPas	1,800	< 10	< 10	20
Density, 25°C	g/ml	1.4	0.95	0.93	0.93
Mixing ratio in pa	rts by weight	100	28	28	32
520				Mixture	
Potlife, 100 g / RT, approx. values min			60	150	210
Mixed viscosity, 25°C, approx. values mPas			360	550	550

Thermal Data, neat resin specimen (approx. values after post curing)						
Biresin® CR132 resin with hardener		Biresin® CH132-2	Biresin® CH132-5	Biresin® CH132-7		
Heat distortion temperature	ISO 75A	°C	123	136	130	
Glass transition temperature	ISO 11357	°C	130	135	135	

after post curing: 8 h / 140°C after post curing: 12 h / 125°C after post curing: 8 h / 125°C

Conclusion: Sika does not offer...

"Eierlegende Vollmilchsau"

all-in-one device, suitable for every purpose

But we offer the right solution for aircraft manufacturer

