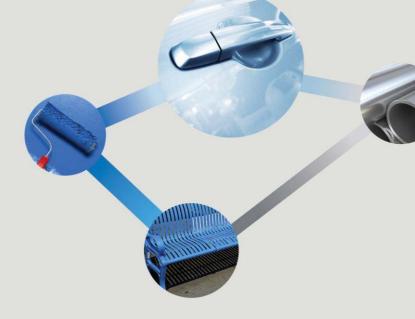
Ramspec 2014


Compliance with the latest environmental legislation without compromising paint performance

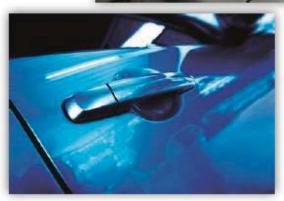
A new generation of acrylic binders

Adriaan Sanderse, Dirk Mestach

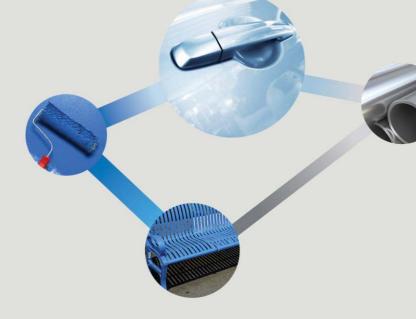
Nuplex Resins BV

The Netherlands

Nuplex


Focused on developing solutions for architectural, performance and industrial coatings and delivering tailored service

- Leading positions in a range of market segments
 - ACE & Transportation
 - Architectural
 - Automotive OEM & Vehicle Refinish
 - Construction, Flooring & Adhesives
 - Industrial Metal, Wood & Plastic
 - Marine & Protective
 - Textiles, Inks & Other


nuplex

Global reach, local touch

With over US\$1bn in sales world-wide, we offer global strength, local knowledge

Compliant decorative coatings

Decorative coatings and Indoor Air Quality

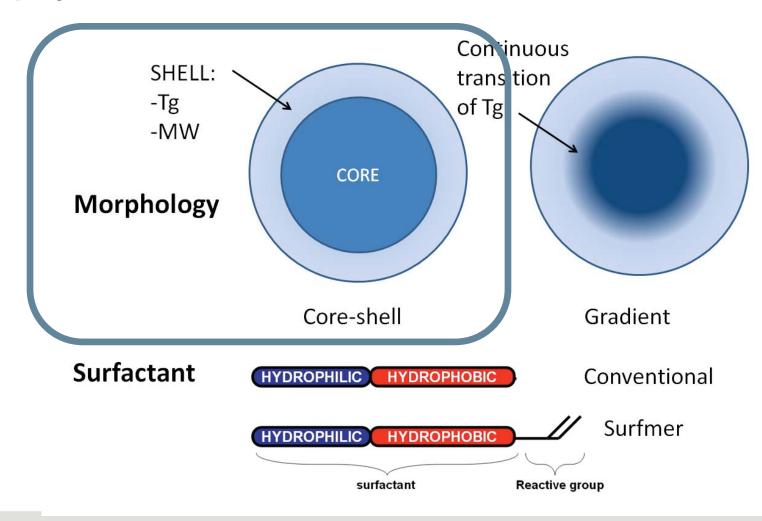
- Paints Directive 2004/42/EC: focus on the volatile organic compounds* (VOC) present in the liquid coating.
- Paint will continue to emit VOC for a long time after having been applied.
 - For paints and coatings that are being used indoors, this can lead to reduced indoor air quality (IAQ).
- Total VOC (TVOC): ISO 16000
 - all compounds between n-hexane and n-hexadecane

*ISO 16000/AFFSET

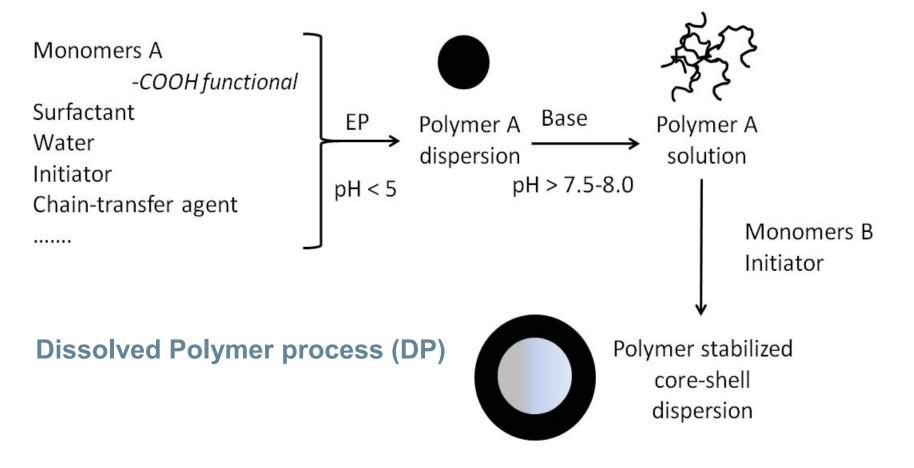
* initial boiling point less than or equal to 250 °C (482 °F) measured at a standard atmospheric pressure of 101.3 kPa.

Waterborne binders for coatings with low (T)VOC

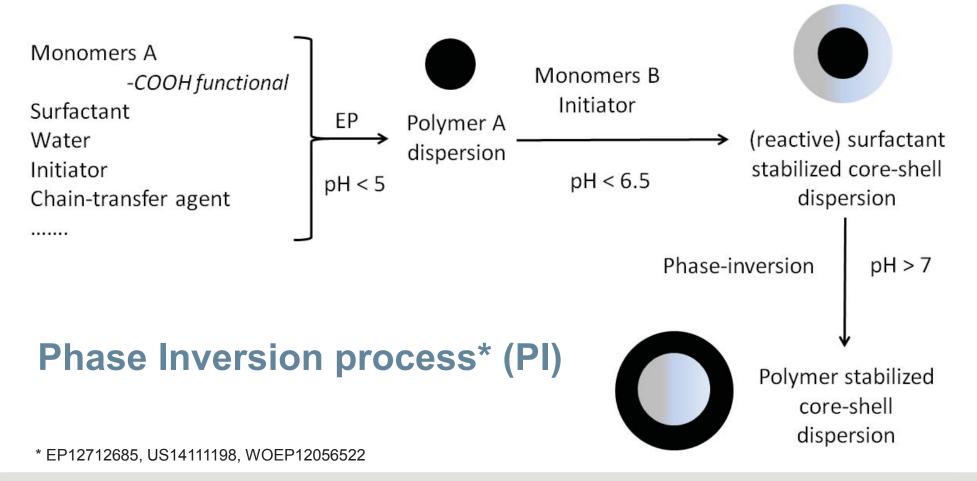
- How to get good hardness and yet sufficient film-formation at low temperatures
 - how to separate the glass-transition temperature (Tg) of the polymer from the minimal film-formation temperature (MFFT)
- Acrylic dispersions:
 - Homogeneous morphology: MFFT ≈ Tg
 - Heterogeneous morphology:
 - core-shell morphology
 - gradient morphology


Stabilization of acrylic dispersions

- Conventional surfactants:
 - Can migrate: reduced chemical resistance and surface hardness
- Reactive surfactants:
 - · Chemically bound to the polymer
 - Non-migratory:
 - Improved water-resistance
 - Improved blocking resistance
- Polymeric surfactants:
 - Low molecular weight
 - High acid value


Morphology control and particle stabilization in emulsion polymerization

Conventional polymer stabilized acrylic dispersion


Scheme 1

Novel polymer stabilized acrylic dispersion

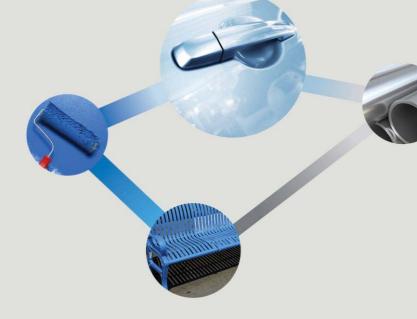
Scheme 2

Main advantages of the novel polymerization route

- Molecular weight of the stabilizing polymer can be much higher
- Acid value of the product can be lower
- Functional monomers that interact with acid groups can be used
- Particle size can be very low
- Neutral pH is possible
- Better (wet) adhesion on closed substrates (aged paint layers, glass, ceramic tiles,...
- Improved early water resistance
- Improved (early) block resistance
- Reduced dirt pick-up
- Very good chemical and hand grease resistance
- Visco-stable paint
- Excellent in-can clarity
- No discoloration of wood (e.g. oak)

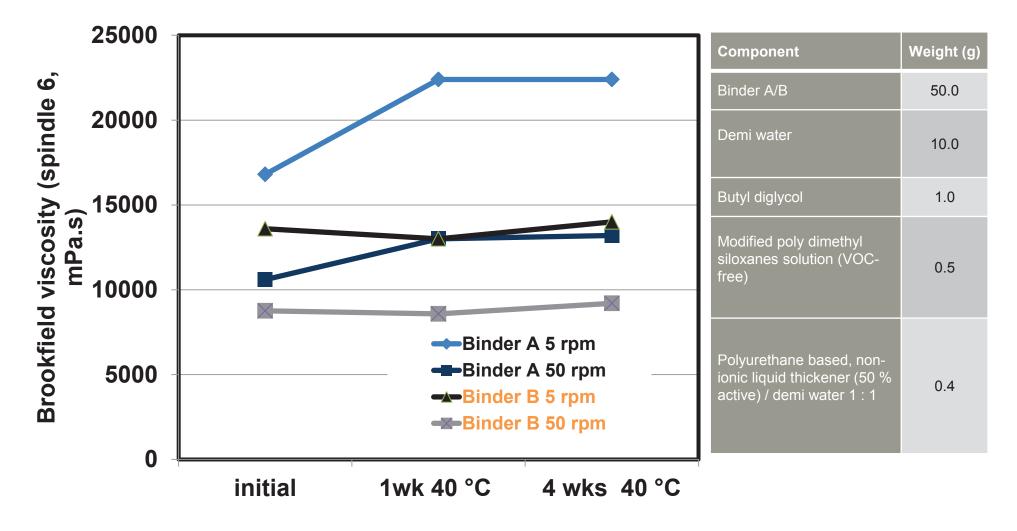
Experimental binders

		Stabilizing polymer			Binder		
Pro	Cess	Molecular weight	Acid value	wt %	MFFT	Solids content (%)	рН
DP	Binder A	low	high	35	< 5	44	7.5
PI	Binder B	high	low	35	< 5	44	8.2
DP	Binder C	low	high	52	23	40	8.3
PI	Binder D	high	low	52	36	42	8.5


Comparative testing of polymer stabilized acrylic dispersions

- Binders A & B:
 - Interior / exterior application

- Binders C & D:
 - Interior application



Interior / exterior application

Binders A and B

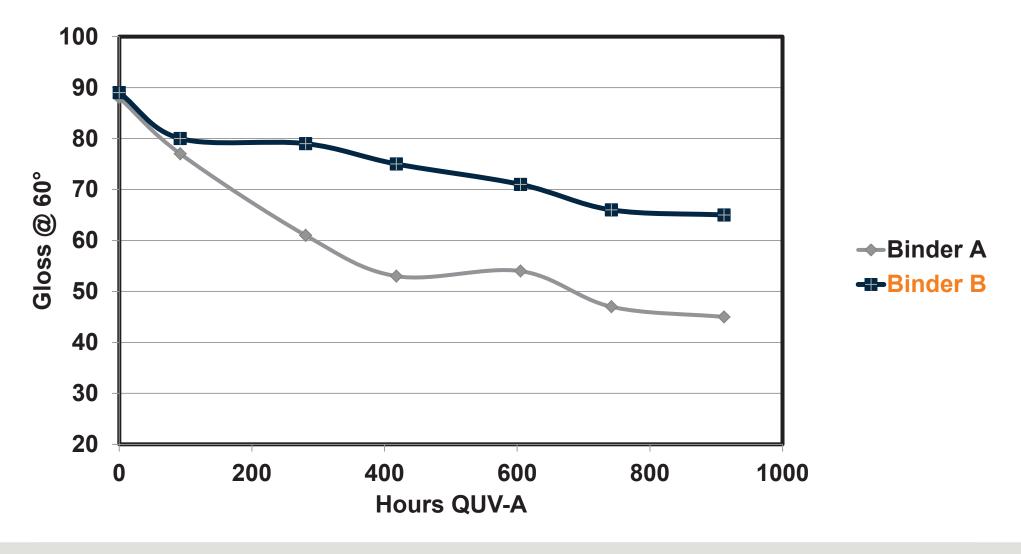
Viscosity stability of clear varnishes

nuplex

Development of blocking resistance as a function of drying time (4h at 50 °C 1 kg/cm²)

Wet layer	Drying time	Blocking resistance		
thickness (micron)	(23 °C, 50% RH)	Binder A	Binder B	
	2 h	0	8	
250	4 h	6	8	
	24 h	8	8	

Blocking: 0: poor, 10: good


Properties of clear varnishes

Property	Binder A	Binder B
Film-formation on glass at 4 °C	5	5
Early water resistance		
Drying time 1 h	2/5	5/5
2 h	0/0	5/5
3 h	0/0	5/5
4 h	0/0	5/5
5 h	0/0	5/5
24 h	0/0	5/5
König hardness (s)	49	43
Vapor test	2	5
Scratch resistance	0	1
Gloss 20-60°	70-84	65-82

Ranking: 0: poor, 5: good

Loss of gloss of wood-stains

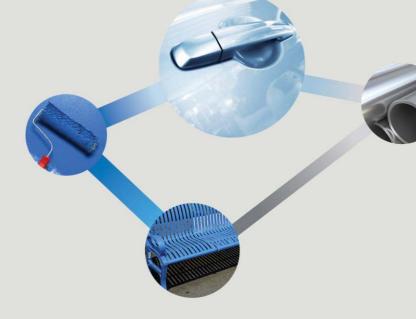


nuplex

Interior / exterior low emission satin gloss white trim paint based on binder B

Mill base

Component	Weight (g)	
Water	55	Droportios
Polymeric wetting and dispersing	12	Properties
additive	. –	
Defoamer	5	Property
Titanium dioxide	232	
Binder B	100	VOC (incl.
Mill base	45.5	water)
Flow additive	0.8	Weight solids
2-ethyl hexyl benzoate	2	Density
Defoamer	1.5	
Micronized wax	1.8	PVC
Water	28	Viscosity
Newtonian rheology modifier	3	High shear



Performance of low emission satin gloss white trim paint based on binder B

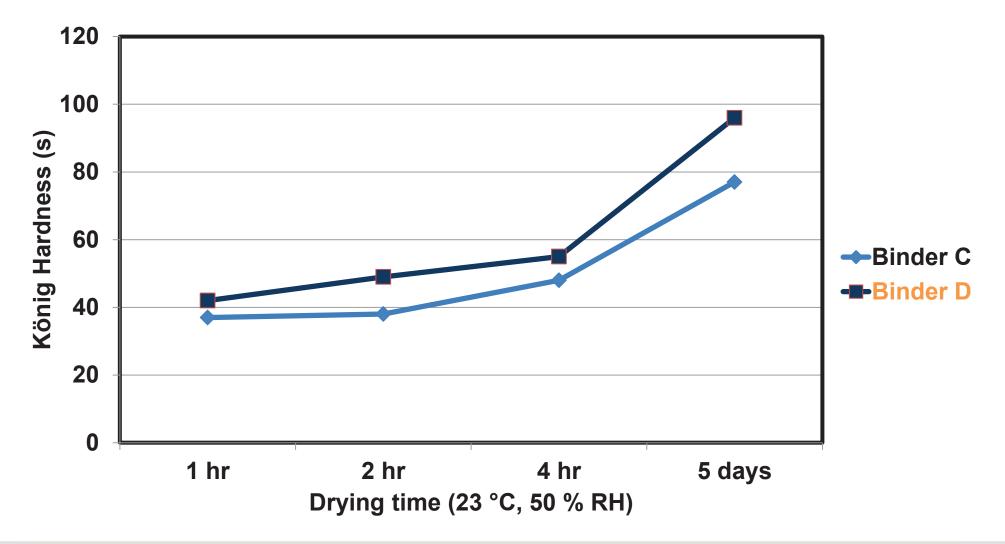
Property	Value
Syneresis	ОК
Flow / leveling	4-5
Defoaming	4-5
Brushability	++
Open time first layer	15-20 m
Open time second layer after drying at room temperature for 4 h	15 m
Recoatability	++
Early blocking 150µm	8
Hardness (König)	30 s
Gloss 20-60°	14-49 GU

Ranking: 0: poor, 5: good

Interior application

Binders C & D

Satin gloss interior white paints


Mill base

Ingredient	Weight (g)
Propylene glycol	25
Demi water	52
Solution of a high molecular weight block copolymer with pigment affinic groups (40 % active)	14
Modified polydimethyl siloxane (10 % in 2-butoxyethanol)	5
TiO ₂ (Rutile, aluminium and zirconium surface treatment)	232

Ingredient	Weight (g)
Binder C or D	100
Pigment paste	48.8
2,2,4-trimethyl-1,3-pentaandiolmonoisobutyraat	4.0
Dipropylene glycol methyl ether	4.0
100% organo-modified silicones defoamer	1.5
Silica matting agent	1.5
Demi water	28.0
Ammonia (25 %)	Until pH 9.5
Alkali soluble acrylic based associative thickener	5.0

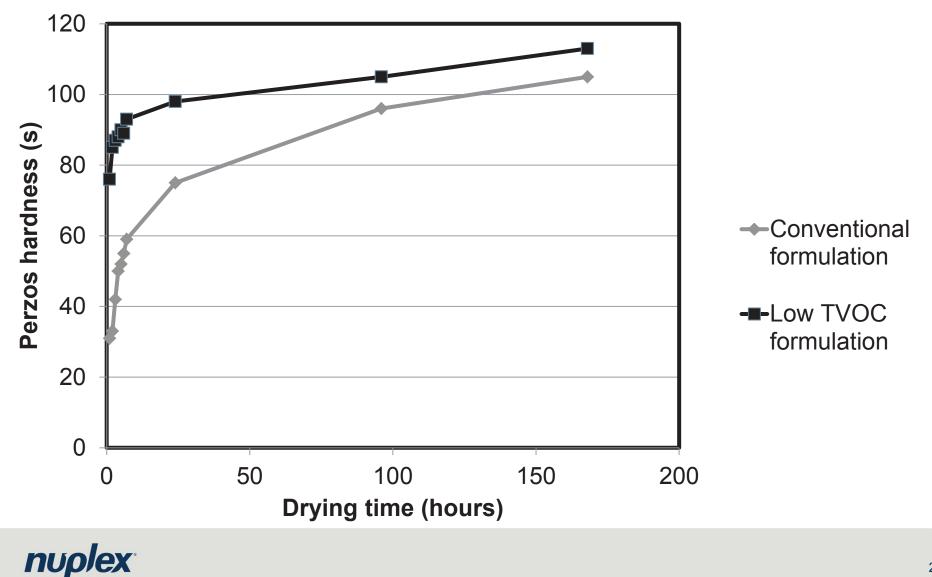
Satin gloss interior white paint – hardness development

nuplex

Properties of a satin gloss brushing paint based on binder D

Property	Value
pH	8.5
High shear viscosity (Poise)	2.2
Brookfield viscosity	
(spindle 06, 5-50 rpm, mPa.s)	
Initial	3600 - 2760
After 5 days at 40°C	3000 - 2200
Viscosity difference	-17%
Syneresis	OK
Flow / leveling	4 - 5
Defoaming	4 - 5
Brushability	++
Open time (m)	12 - 14

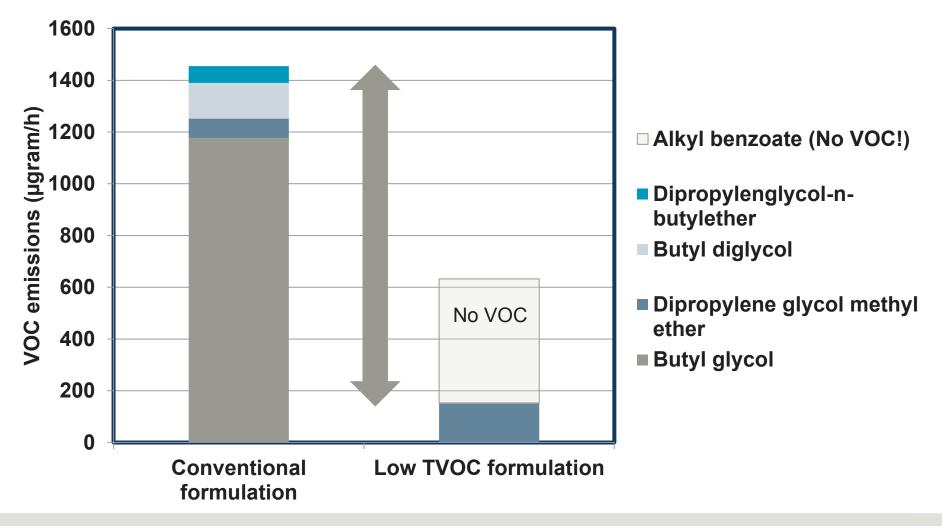
Ranking: 0: poor, 5: good



Low emission interior furniture varnishes based on binder D

Ingredients	Conventional formulation	Low TVOC formulation
Binder D	87.77	89.00
Demi water	7.42	7.53
Butyl Glycol / Butyl di glycol / Dipropylenglycol-n- butylether (3:0.5:0.5)	2.63	-
Alkyl Benzoate Plasticizer	-	1.78
Modified polysiloxane defoamer*	1.00	0.36
Acetylenic diol surface active agent *	0.35	0.36
Polyurethane-based thickener	0.22	0.36
Slip additive based on an emulsion of a high molecular weight polydimethylsiloxane	0.60	0.61
* Contains dipropylenglycol-n-methyl ether		
Coalescent content on solid resin (%)	3.00	2.41

Hardness development furniture varnishes based on binder D



Thermal desorption and cold trap

nuplex

TVOC emission rates after 48 hours of varnishes based on binder D

nuplex

Conclusions

- A novel emulsion polymerization process has been developed, based on phase-inversion technology.
- This process can overcome the deficiencies of the dissolved polymer stabilizer process.
- Benefits of the new process have been demonstrated with regards to coating properties.
- Significant reduction of longer term emissions is possible with acrylic polymer dispersions synthesized using the novel phase inversion process.
- Both binders are commercially available:
 - Binder B: Setaqua ECO 6791
 - Binder D: Setaqua ECO 6788

Acknowledgements

- Ankie van Gorkum
- Jessica Rommens
- Andrew Teasdale
- Wouter Kloosterman
- Aschwin van der Horst
- Jacqueline Slaakweg
- Afke Kroes
- Rob Adolphs

Thank you for your attention

