

Creating Additive Value

Innovative and sustainable additives in the coatings industry: highperformance solutions without compromise

Tina Leyh

Sustainable additives for a wide range of applications

Creating sustainable products and technologies to support the following global efforts:

- Reducing of energy and emissions
- Minimizing of the use of resources

Increasing the amount of products in our portfolio which have:

- Have renewable raw materials and/or
- Are biodegradable acc. to OECD

2

• Are microplastic free and PTFE free

We are doing research to enlarge the recycled inputs on the MÜNZING products

Reduce CO₂ **footprint** MÜNZING Goals: 2030: 80% CO₂ neutral, 2040: 100% CO₂ neutral, 2050: 100% CO₂ free

We help our customers in CREATING SUSTAINABLE VALUE!

CREATING ADDITIVE VALUE

Our key points for sustainable additive development

1. RENEWABLE CONTENT

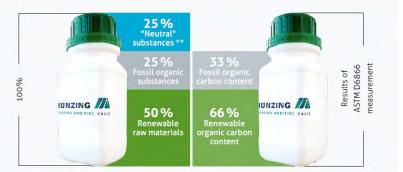
- ASTM D6866: Renewable carbon content
- Schematic composition

2. BIODEGRADABILITY

- Measured in our lab acc. to OECD 301 F
- → Readily biodegradable if > 60% removal of COD within 28 days testing period

3. MICROPLASTIC FREE

4. VOC FREE


5. PTFE FREE

6. CREATING SUSTAINABLE VALUE

Our additives improve the properties of your formulations \rightarrow increase the lifespan of the coatings

Our sustainability strategy is inspired by our guiding principle "Creating Additive Value". We create sustainable products and technologies to support global efforts to reduce energy consumption, minimize emissions and usage of resources to help our customers CREATING SUSTAINABLE VALUE!

7. BROAD COMPLIANCE WITH DIFFERENT REGULATORIES AND INVENTORIES

GREEN PRODUCTS Brochure with our sustainable additives

		Fossil substances Renewable substances	content in % according to ASTM D6866*	according to OECD 301	Adhesives 6 Heatseal	Architectural Coatings	Building 6 Construction (Produ	Energy & Oilfield	Industrial Coatings	Laminates	Paper	Printing Inks	Water treatment 5 Process Water	Wood Coatings	Wood Panels	
DEFOAMER																
AGITAN® 271	Vegetable oil, polyoxalkylene		45-55	no				•								Excellent stability, high efficiency, alkali and acid resistant, pH-range between 3 and 12.
AGITAN" 301	Vegetable oil, few silicone	0	85-95	yes							•		•			Nonionic structure, excellent compatibility with binders, easy to incorporate, suitable for food contact applications.
AGITAN® 352	Vegetable oll, polyoxalkylene		50-60	yes												Excellent stability, high efficiency, alkali and acid resistant, pH-range between 3 and 12.

Test Results

Defoamer for high PVC indoor Wall Paint based on Vinyl Acetate

90g coating + 0,4%	IKA stirring test	Appearance		Film defoaming (roller application)		De-aeration	Appearance	Film defoaming (roller application)	
defoamer	[%] foam	after 24 h	wet	dry	40°	[% foam]	after 24 h	wet	dry
without defoamer	43.2	very foamy	2	3	ks at	37.3	very foamy	2	3
Reference	8.2	homogeneous	3	5	/eek	9.5	slightly foamy	3-4	4
AGITAN [®] 105	4.4	homogeneous	3-4	6	4 M	8.2	slightly foamy	3-4	4
AGITAN [®] 109	4.1	homogeneous	4	6	e for	4.7	slightly foamy	5	7
AGITAN [®] 271	0.4	homogeneous	5	7	rag	3.1	slightly foamy	6	6
AGITAN [®] 351	0.3	homogeneous	5	8	Sto	2.7	slightly foamy	7	8
AGITAN [®] 352	1.6	homogeneous	4	7		3.0	slightly foamy	5	6

Defoamer evaluation from 1 to 10 : 1 – worst / 10 – excellent

> AGITAN[®] 105 shows good initial defoaming efficiency (small decreases after storage but still better than the reference)

> AGITAN[®] 109; 271; 351 and 352 achieve good defoaming results at all and very good persistence after storage

Test Results Defoamer for Elastomeric Roof Seal Paint

Roof seal paint + 0.2%	IKA-stirring test	Appearance	-	plication er substrate	Leveling on glass 1000µm	
defoamer	[% air]	after 24 h	wet	dry	overall	film defoaming dry
without defoamer	18.24	homogeneous	1	2	10	1
Reference 1	11.95	homogeneous	1	1	10	2
Reference 2	6.52	homogeneous	3	3	10	4
AGITAN [®] 271	6.86	homogeneous	7	7	10	6
AGITAN [®] 351	4.09	homogeneous	7	7	10	7
AGITAN [®] 352	5.44	homogeneous	6	7	10	6

Defoamer evaluation from 1 to 10 : 1 – worst / 10 – excellent

> With regard of both Reference defoamers all mentioned AGITAN[®] types show very high defoaming efficiency on both substrates

METOLAT[®] 367 R and METOLAT[®] 388 R

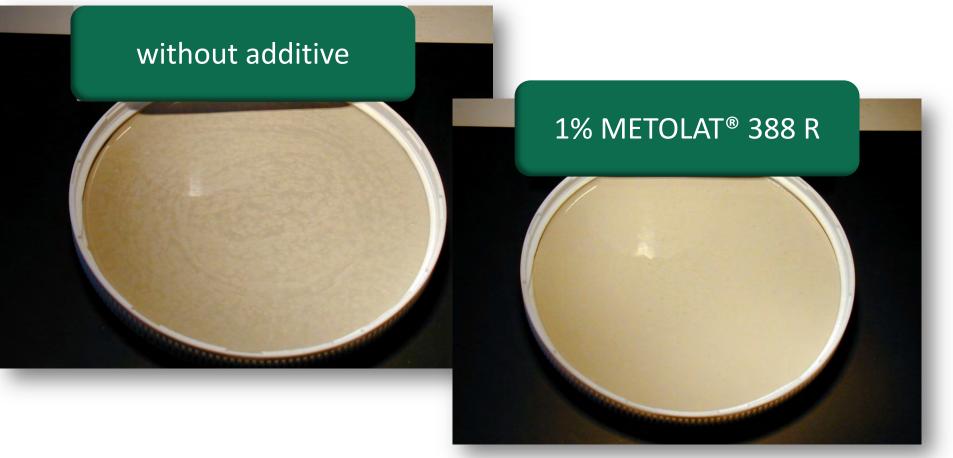
Highly Efficient & Renewable Compatibilizer

Rub-out test in architectural coating

Without additives	+0.5% PUR thickener	+0.5% PUR thickener <u>+1% compatibilizer</u>
✓ Rheol	\checkmark	Rheology Color acceptance Color development Rub-ouț elimination

METOLAT[®] 367 R

 $\sim 100\%$ renewable


METOLAT[®] 388 R ~100% renewable

- <u>Type</u>: Polyglycol esters, non-ionic
- Active content: 100% (liquid)
- Broad applicability & compliances
- Post-additives especially for:
 - Enhanced color development
 - Eliminating/reducing rub-out effects

Applications Compatibility – Silicone-free, nonionic

Pigmented amine component of a 2K-EP flooring

Applications METOLAT[®] 368 – Wetting of a PSA on PVC

Without wetting agent

2% METOLAT[®] 368

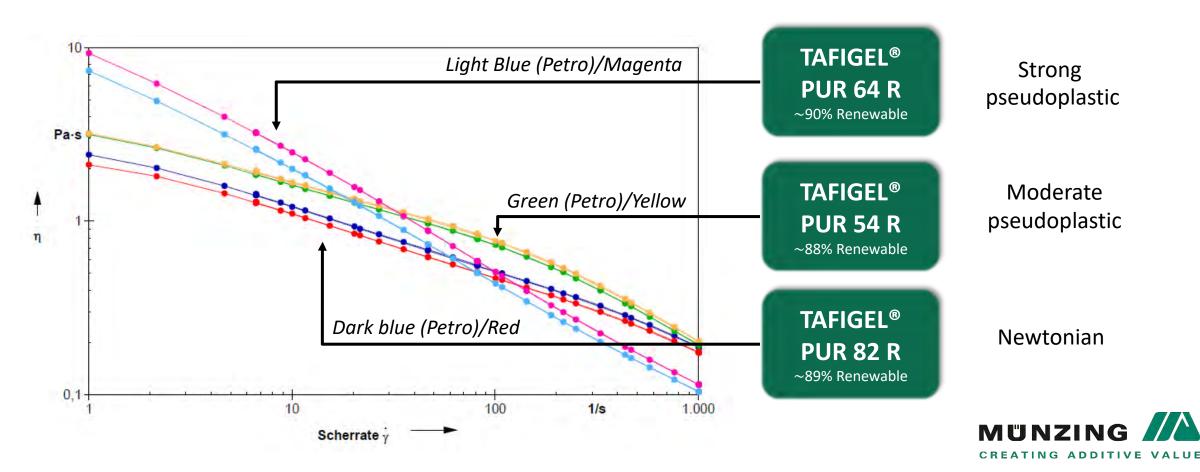
EDAPLAN[®] 397 R High-Performer for Phthalocyanines, Great for Organic Pigments

		Pigment Green	Pigment Blue	Pigment Red	Pigment Yellow
		PG 7	PB 15:3	PR 254	PY 154
Water		49.70	47.30	53.60	63.10
AGITAN [®] 760		0.50	0.50	0.50	0.50
Acticide MBS		0.10	0.10	0.10	0.10
EDAPLAN [®] 397 R	R	9.60	12.00	10.50	6.00
Ammonia (25%)		0.10	0.10	0.30	0.30
Pigment		40.00	40.00	35.00	30.00
TOTAL	TOTAL		100.00	100.00	100.00
%-Dispersant cal	lculated on pigment	24%	30%	30%	20%
Stability of paste	after 24b	No settling	No settling	No settling	No settling
Stability of paste		Low viscous	Medium viscos	Low viscous	Low viscous
	Color strength (integrated)	111.22	114.84	174.01	17.90
Acrylic based	Gloss 20°	101	93	93	90
Clear Coat	Haze 20°	69	55	34	104
	Flocculation/ specks	0	0	0	0
White	Color strength (integrated)	1.46	2.78	3.06	0.64
DIY Paint	Rub-Out (∆E)	0.19	0.35	0.98	1.00

Color Strength	Higher = better*
Gloss	Higher = better
Haze	Lower = better
Flocculation	Lower = better
Rub-Out (∆E)	Lower = better

*possible values depending on color shade

In the case of EDAPLAN[®] 397 R, excess dispersant leads to considerable foam formation


→ start testing at low dosages!

TAFIGEL[®] PUR "R-Series"

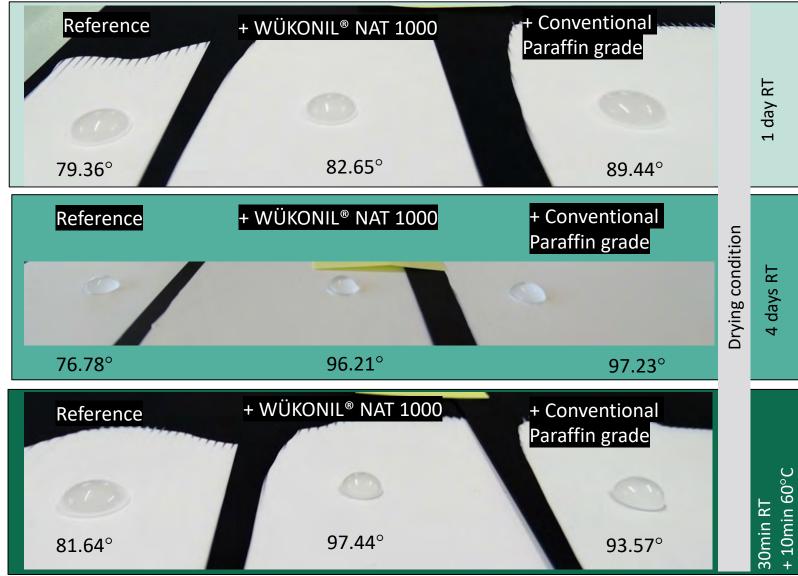
New Renewable PUR Thickeners as Direct Drop-Ins to Standard Versions

- Renewable "Drop-Ins" exhibit the same performance as the standard petro-based PURs
- Test System/Binder: Acrylic copolymer dispersion

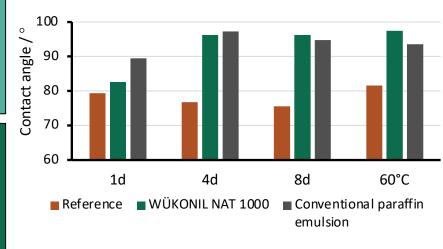
Renewable hydrophobing agent WÜKONIL[®] NAT 1000 – Plaster

Plaster without hydrophobing agent Plaster with 2% WÜKONIL[®] NAT 1000

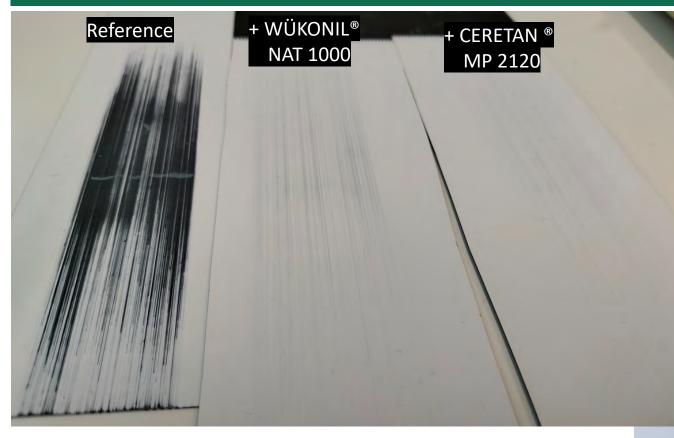
Drying: 7 days at room temperature Wax Dosage: 2% calculated on solid content (6% delivery form)


	Reference	WÜKONIL [®] PW	SÜDRANOL [®] 340eco	WÜKONIL [®] NAT 1000
L*	90.75	92.78	93.57	93.22
a*	-0.4	-0.38	-0.42	-0.43
b*	3.61	3.88	3.78	3.44
ΔE	-	2.05	2.82	2.47

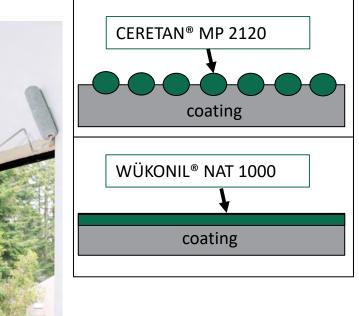
→ Low influence on color with WÜKONIL[®] NAT 1000. Comparable to standard grades.


Renewable hydrophobing agent WÜKONIL[®] NAT 1000 – Paint - Hydrophobicity

Application: 150 μm wet on Leneta card Wax Dosage: 3% solid wax Pictures taken 1min after placing the water drop Contact angle measured with KRÜSS Easy Drop


Improvement of hydrophobic effect for all samples but especially for WÜKONIL[®] NAT 1000 with

- Higher temperature
- Longer drying time



Renewable hydrophobing agent WÜKONIL[®] NAT 1000 – Paint – Wet scrub resistance

Zehnter abrasion measurement ZAA 2600 based on DIN EN ISO 11998 Washing solution: 0.25% Marlon A 350 solution Parameters: 350 cycles Application: 150 μm wet on Leneta card Drying: 7 days at room temperature Wax Dosage: 3% solid wax

Improvement of wet scrub resistance with micronized wax CERETAN[®] MP 2120 and WÜKONIL[®] NAT 1000

Hydrophobing agent– WÜKONIL® NAT 1000 – Wood Coating

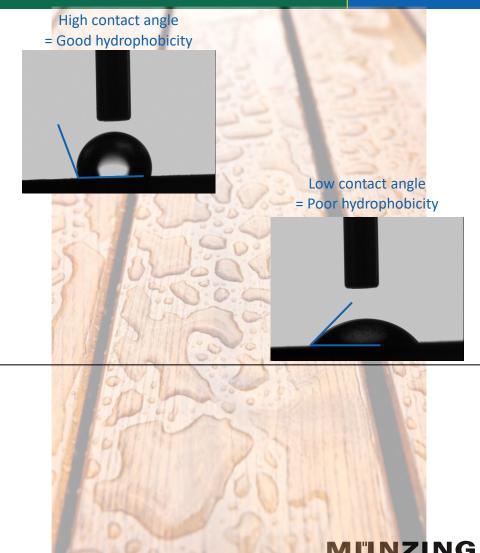
Test in water based clear wood coating

Dosage: 2 % (solid wax)

Wet film thickness: 100 μm

Curing conditions: 10 min at 60 $^\circ\text{C}$ after short drying at room temperature

ightarrow Drying at 60 °C further improves hydrophobicity


	Contact angle
Blank sample	53.4° poor
WÜKONIL [®] NAT 1000	101.4° very good
Conventional paraffin dispersion	100.5° very good

Storage stability of the samples after 3 days

WÜKONIL® NAT 1000 In wood coating. No separation visible

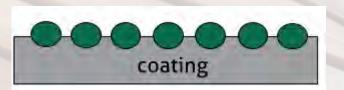
Conventional paraffin Dispersion in wood coating. Separation clearly visible

CREATING ADDITIVE VALUE

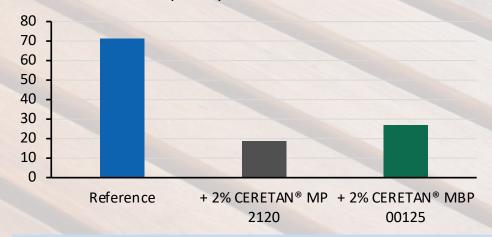
Slip and matting in wood coatings

<u>SLIP</u>

Test in water based, white pigmented wood coating Dosage: 2 % (solid wax) Wet film thickness: 200 μm Drying at 60 °C in a stove


	Reference	WÜKONIL [®] NAT 1000	Conventional paraffin dispersion	
COF µD	0.30	0.18	0.19	

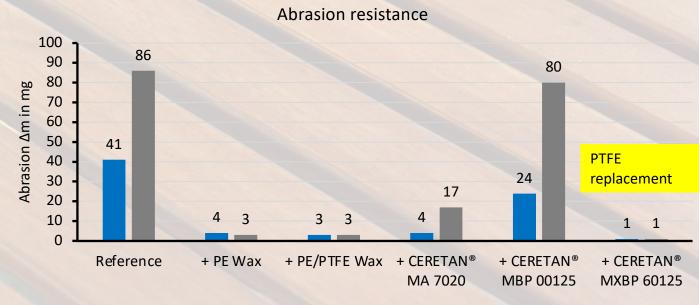
Depending on the wax type the COF can be either increased or decreased.


- CERETAN[®] MBP 00125 doesn't change the COF or can be used as anti-slip additive
- WÜKONIL[®] NAT 1000 gives slip properties

MATTING

Matting effect depends on the particle size of the wax → diffuse light scattering on wax particles sticking out of the surface

Gloss 60° Standard wood coating formulation, 30 µm dry film thickness


Same gloss reduction and no effect on slip like PP wax

Abrasion resistance and sandability in wood coatings

ABRASION RESISTANCE

Acrylic clear wood coating Dosage: 3% Application on Leneta card Taber Abraser 200 cycles

80 μm 120 μm

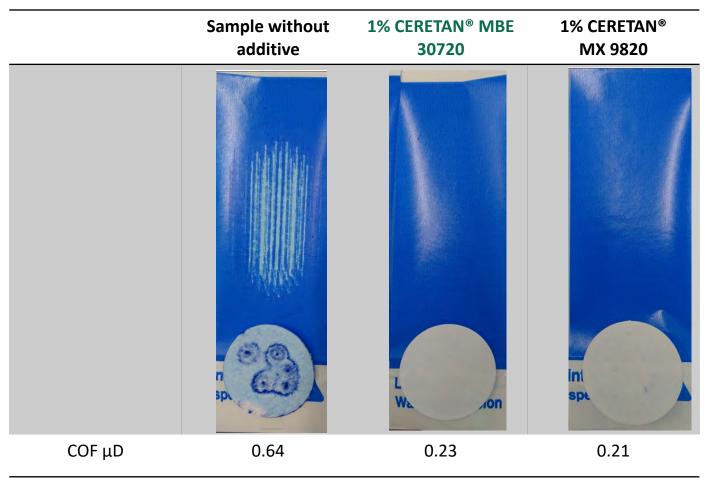
SANDABILITY

CERETAN [®] MBP 00125	Polyolefin wax

Pictures: Sanding paper after 20 rubs on acrylic wood coating with sanding paper

CERETAN[®] MBP 00125 is a biopolymer with a decomposition temperature > $200^{\circ}C$ \rightarrow Good thermal resistance

Printing ink – water based


Water-based printing ink, 200 rub cycles

	Sample without additive	1% CERETAN [®] MBP 20220	1% CERETAN [®] MX 9820	1% CERETAN® MT 9119	1% LUBA-print [®] WBP 2700	1% LUBA-print® W 5700
	r-p Isdit	rin ispa	A-1 :hso.	rim ispen	A The	A.
COF µD	0.54	0.17	0.11	0.17	0.33	0.23

Printing ink – water based

Water-based printing ink, 200 rub cycles

Printing ink – solvent based

Solvent-based printing ink, 200 rub cycles

	Sample without additive	1% CERETAN [®] MBE 30720	1% CERETAN [®] MBP 20220	1% CERETAN® MX 9820
	nt spers.	it pei	sic	nt sper
COF µD	0.39	0.27	0.36	0.27

Thank you

Vielen Dank

