Lubrizol Wax Additives Sustainability and PFAS Regulatory Compliance

Ralf Eberhards Global Technology Manager Surface Modifier Additives Lubrizol Performance Coatings

Content

- Lubrizol Corporate Sustainability Goals & Footprint
- Lubrizol Performance Coatings How can our products help our customers to achieve their sustainability goals?
 - 1) Increase renewable content
 - Bio-based vs. Biomass Balance (BMB)
 - Measurement
 - Lubrizol Traditional vs. Bio-based Wax Additives portfolio
 - Lubrizol Novel Bio-based and BMB Wax Additves
 - 2) Removing Chemistry of Concern PFAS
 - PTFE regulatory situation
 - PTFE alternatives
 - Performance data

Lubrizol Sustainability Goals

Emissions

Reduce Scope 1* and Scope 2* greenhouse gas emissions by **20% by 2030** (compared to a 2018 baseline).

Waste

Decrease our waste by **10% by 2030** (compared to a 2018 baseline). This includes reducing the amount of waste generated, reducing scrap and increasing recyclability.

Conduct

Conduct water risk assessments at all Lubrizol manufacturing sites biennially to determine opportunities for additional improvements. We will also sponsor annual waterbody restoration or clean-up activities in the communities we call home.

Community Giving

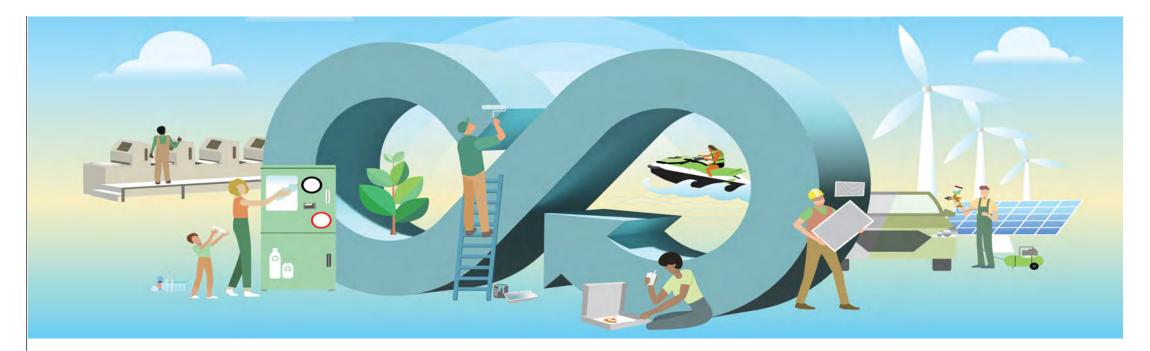
Giving at least \$20,280,000 to organizations that are aligned with our community investment priorities.

Volunteering

Giving at least 80,000 volunteer hours to activities that are aligned with our community investment priorities.

Supplier Ethics

Complete an annual performance evaluation of all key suppliers and ensure all key suppliers agree to Lubrizol's Supplier Code of Conduct (or demonstrate equivalency).



3

Supplier Sustainability

Complete EcoVadis assessments on 80% of key suppliers by 2028.

Delivering maximum value by enabling customers to achieve performance & sustainability goals through **responsible design** focused on:

- Emissions reduction and elimination of chemicals of concern
- Productivity, process efficiency, energy & waste reduction

Lubrizol Performance Coatings – How can our products help our customers to achieve their sustainability goals?

1) Increase Renewable Content

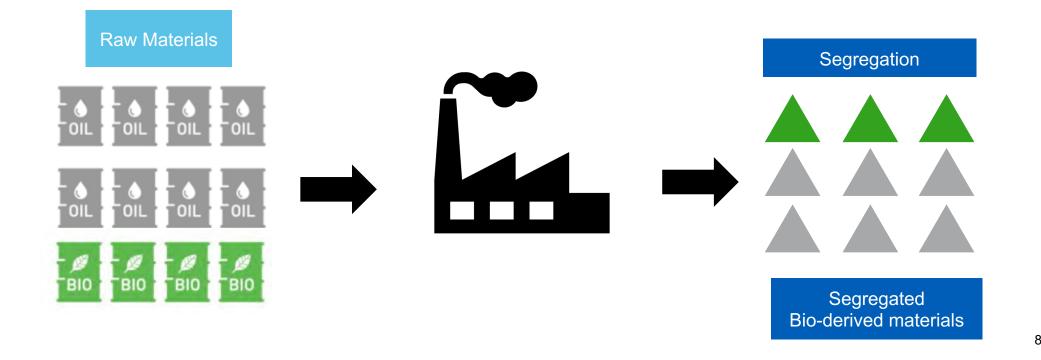
Circularity – Design – Sourcing

Reviewing Bio-Based Raw Material Options

Lubrizol Performance Coatings would like to replace scarce resources with renewable bio-based resources wherever possible.

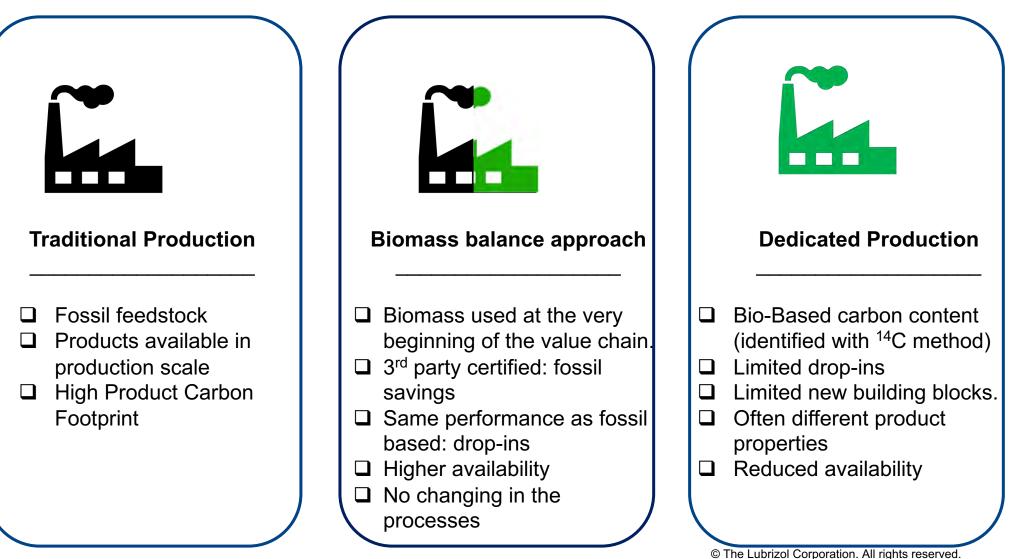
- Bio-based raw materials
 - \rightarrow Bio-derived dispersants and polymers
 - \rightarrow Bio-derived waxes

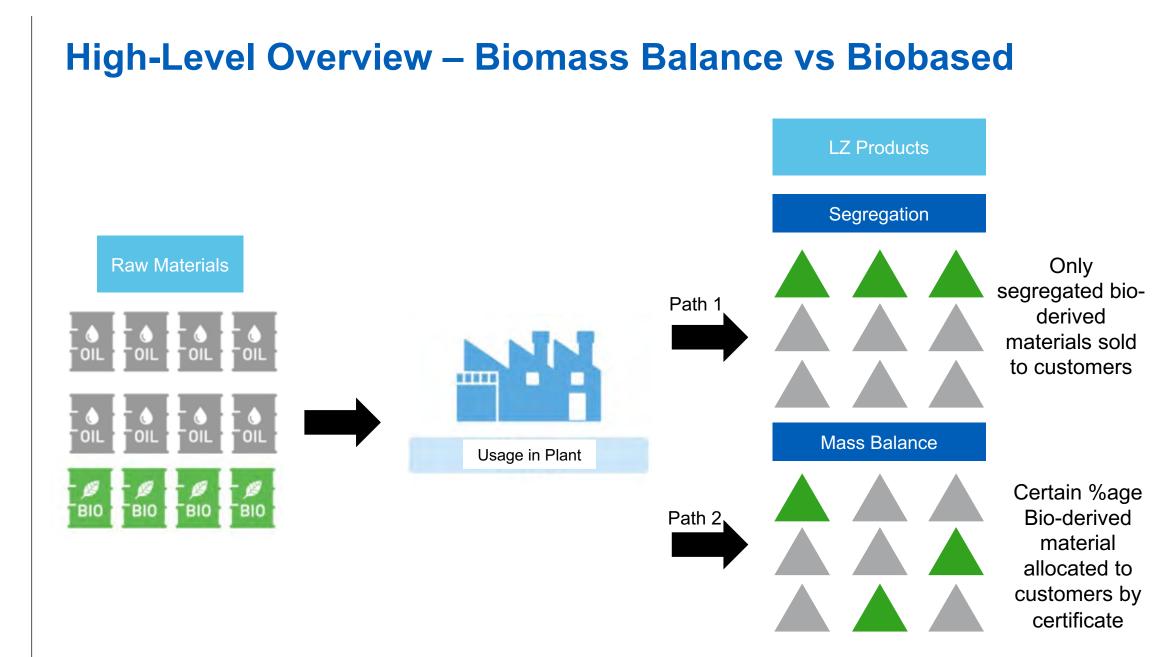
MINIMIZING OUR FOOTPRINT


OUR HANDPRINT

7

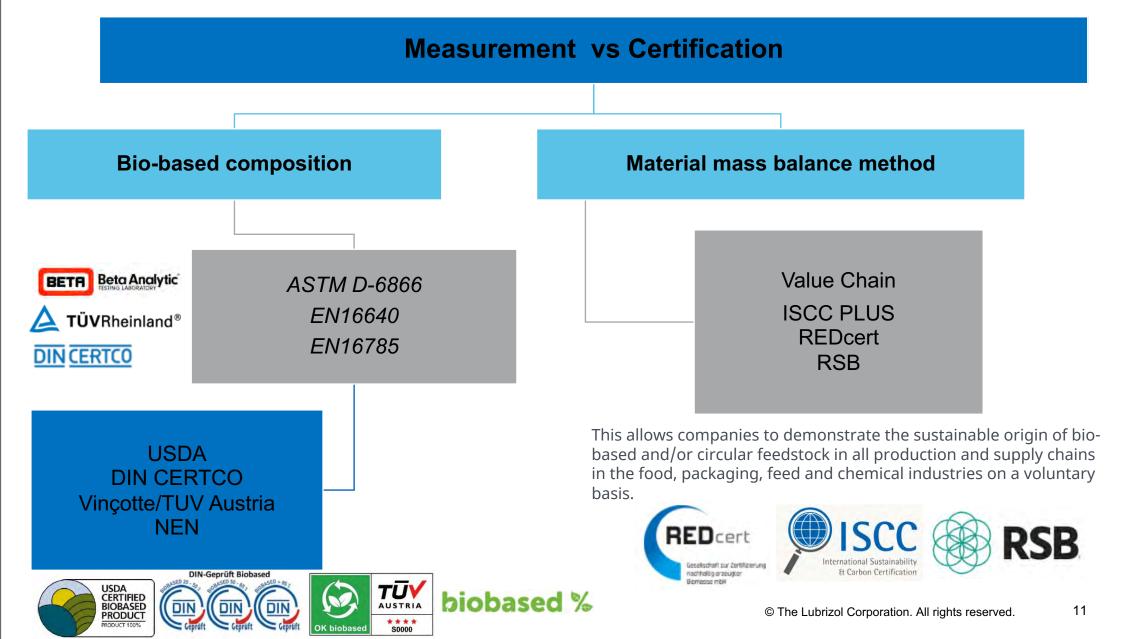
Renewable Carbon Sources: Bio-Based

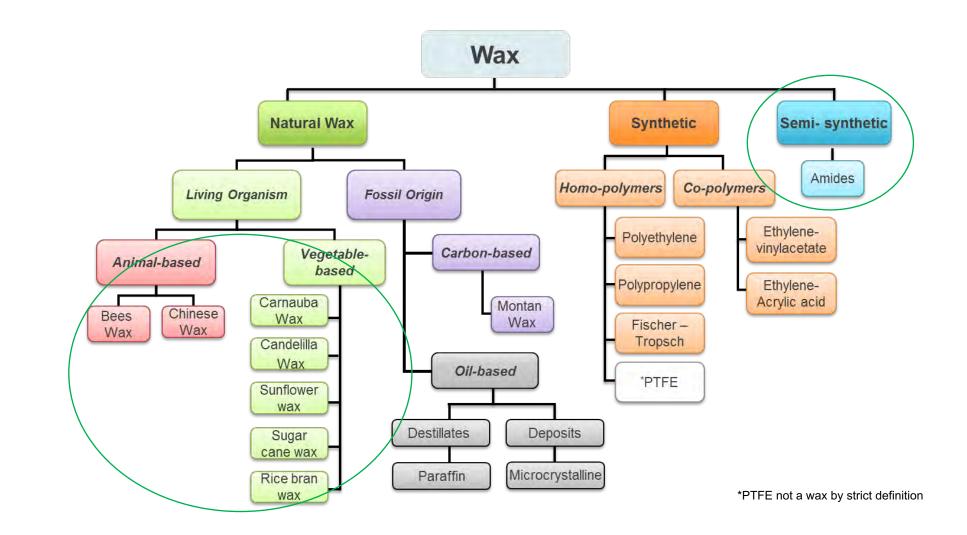

 Refers to, products that mainly consist of a substance (or substances) derived from living matter (biomass) and either occur naturally or refer to products made by processes that use biomass.



Renewable Carbon Sources: Biomass balance (BMB)

Filling the gap between traditional and dedicated production


Lubrizol


Lubrizol

Biobased vs Biomass

brizol

Raw Materials – "World of Waxes"

Traditional Bio-based waxes

- Carnauba
 - High Slip Properties
 - Scratch Resistance
 - Good Film Clarity
 - Minimal Matting
 - T1 Grade whiter, younger
 - T3 Grade older, more yellow

- Fatty Acid Amide
 - Excellent Antiblock and Release
 Properties
 - Provides Silky Feel
 - Some Matting
 - Limited Scratch Protection
 - Sandability
 - Plant and Animal Sources

Bio-based % of Lubrizol commercial products

BIO-BASED WAX ADDITIVES FOR COATINGS AND INKS

Lubrizol Performance Coatings

www.lubrizol.com/coatings

contenting the growing demonstrol or winners as the device a second sound y demonstrate the device of the device mean of constitutions and inits. Lubricol offers a selection of was technologies with bio based content. These raw materials include micromical providers and liquid dispersions/emulsions designed for use in a range of applications. How are fully or partially based on waxes from plant-based or animal sources, which decreases the consemption of fossil resources and help improve the carbon fostprint of coatings and inks without sacrificing performance. We continue to develop our engls of bio based waves. Please contant us to discuss latest status and availability, and hear about the specific properties of new grades.

			Particle Size µm		Melting Point	Density	Coating Types			
Product Name	Polymer Type	Bio- Based % of Solids	DV50	DV90	*C (*F)	g/cm³ @ 20°C	Water- Borne	Solvent- Borne	Powder	Radiation- Cured
Lanco" 1380 F	Modified Polypropylene Wax	25-50	-59	s22	150 (302)	0.95	•	•	D.	
Lanco [™] 1380 SF	Modified Polypropylene Wax	25-50	56	≤14	150 (302)	0,95			D.	
Lanco* 1400 SF	Modified Amide Wax	25-50	\$6	s14	140 (284)	0.97	a.		•	a
Lanco* 1410 LF	Modified Amide Wax	25-50	39	s19	140 (284)	0.97				iq.
Lanco" 1955 SF	Carnauba Wax	a 90	36	±14	82 (190)	0.99		•	Ø	R
Lanco" 2510 SF	Inorganically Modified Wax Compound	25-50	56	s14	105(221)	1.05	•		0.	0.
Lanco" 2520 SF	Inorganically Modified Wax Compound	25-50	56	≤14	105(221)	1.07			8	×
Lanco [™] 2520 EF	Inorganically Modified Wax Compound	25-50	35	s10	105(221)	1.07			p.	ø
Lanco" A 1602.	Fatty Acid Amide Wax	2 90	59	s22	142 (288)	0.99	ά		•	ø
Lanco" A 1603	Vegetable Based Amide Wax	e 90	56	≤14	142 (288)	0.99	.0			×.
Lanco" Flow P 30	Oleo-Based Modified Wax	z 90	≤20	≤80	87 (189)	1.00		1		
Lanco" PE 1544 F	Modified Polyethelyne Wax	25-50	:9	\$22	140 (284)	0,99				×
Lanco* PE 1554 SF	Modified Camauba Wax	25-50	56	≤14	104 (219)	0.96	ø			1
Lanco [™] PP 1362 D	Modified Polypropylene Wax	25-50	39	s22.	140 (284)	0.94	•			
Lanco" PP 1362 SF	Modified Polypropylene Wax	25-50	56	≤14	140 (284)	0,94			1	1.00
Lanco" SM 2003	Modified Amide Wax	25-50	:9	s22.	140 (284)	0.97	a			a
Pinnacle* 2531	Amide Wax	≥ 90	s10	≤24	83 (181)			1.40		
PowderAdd [™] 9060	Amide Wax	≥ 90	±9	≋22	140 (284)	0.99				
PowderAdd™ 9062	Modified Amide Wax	25-50	s25		140 (284)	0.97	1 - 1	127 1	•	
PowderAdd* 9421	Proprietary Polymer	51-89	±7	≤16	80 (176)	0.097				
PowderAdd* 9423	Proprietary Polymer	51-89	≤7.5	425	140 (284)	0.094	100	1.7		1

		Performance				
Product Name	COF Reduction (Slip)	Scratch & Abrasion Resistance	Matting	Silky Feel	Anti-Blocking Non-Sticking	Other Properties/Benefits
Lanco* 1380 F	ø			0		Burnish resistance.
Lanco* 1380 SF		0	101	•		For thin film applications.
Lanco* 1400 SF	1.000	0	191			Excellent surface feel.
Lanco* 1410 LF	ä	n.	ċ			Good compatability in water-based systems.
Lanco* 1955 SF	Part .		1 1		in the second	Good release properties. Acid value <15.
Lanco** 2510 SF	P		Ŷ		10,	Excellent abrasion resistance for PTFE-free formulations.
Lanco* 2520 SF		1 C +	. *			Excellent abrasion resistance for PTFE-free formulations.
Lanco* 2520 EF			8		R	Excellent abrasion resistance for PTFE-free formulations.
Lanco" A 1602	i i	ő.	4.1	a		Good sanding properties for wood coatings.
Lanco" A 1603	ø	c	10		1114111	Excellent release in can coatings,
Lanco* Flow P 30						Degassing and wetting aid for powder coatings
Lanco" PE 1544 F	0	D			8	Very good release properties.
Lanco* PE 1554 SF			1	1.1	ġ	Suitable for coil coatings.
Lanco" PP 1362 D			+	a		Excellent multi-purpose wax.
Lanco* PP 1362 SF	a	ă.	×	•		For thin film applications.
Lanco* SM 2003		p	•	o.	0	Good overall performance in wood coatings. Good degassing in powder coatings.
Pinnacie* 2531	• 21				q	
PowderAdd* 9060	σ.					Degassing in powder coatings.
PowderAdd* 9062	b.	i e				Degassing in powder coatings.
PowderAdd* 9421	0					Degassing in powder coatings. Suitable for low bake systems.
PowderAdd* 9423	0				1	Degassing in powder coatings.

Novel Bio-based and BMB waxes

Product Name	Polymer Type	Bio-based %	BMB* %	Combined sustainable %	Melting Point °C	Particle Size µm
TPW-752	Mod. Rice Bran wax	100	-	100	80	≤ 8
TPW-770	Wax compound	40	30	70	~145	≤ 6
TPW-771	Wax compound	40	30	70	~145	≤ 9
TPW-772	Wax compound	60	-	60	~145	≤ 6
TPW-773	Wax compound	60	-	60	~145	≤ 9
TPW-819	Polymer	100	-	100	~250	≤ 10

* Wax made from mass-balanced certified renewable ethylene according to REDcert² mass balance

Balancing sustainable content for optimized performance in terms of: Scratch resistance, Slip, Matting & Soft Feel

\rightarrow Experimental – available for sampling

brizo

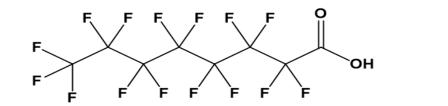
2) Removing Chemistry of Concern -PFAS

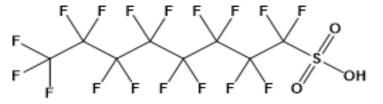
Circularity – Design

Creating Safer More Sustainable Chemistry

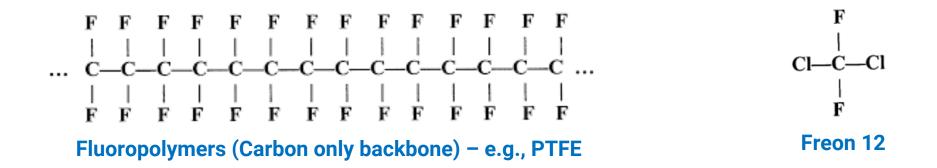
• Eliminating chemicals of concern

Formulating "beyond compliance" through integrated regulatory monitoring & risk assessment


Enabling a safer, healthier workplace & environment

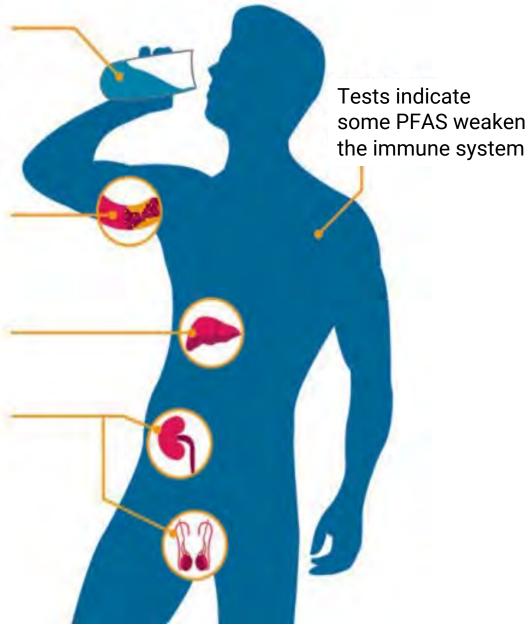


MAXIMIZING OUR HANDPRIN


What are Per- & Polyfluoroalkyl Substances (PFAS)?

Broad term describing **9,000+ chemical substances** containing at least 1 Carbon-Fluorine bond [from small molecules to polymers]

Perfluoroalkyl Substances – e.g., PFOA, PFOS


What is the concern?

Studies have shown that PFAS have contaminated rainwater, drinking water and ground water

PFAS can also be found in most people's blood and is linked to elevated cholesterol levels

Some PFAS can damage the liver

Studies show that some PFAS contribute to the development of kidney and testicular cancer

Lubrizol

High MW PFAS Low MW PFAS

Differentiation regarding toxicity and environmental impact

- Non-polymeric (small molecule) PFAS → Substances of Very High Concern (SVHC)
- Polymeric PFAS (Fluoropolymers like PTFE) → are typically safe
 - Fluoropolymers meeting OECD Polymer of Low Concern (PLC) criteria:
 - Non-toxic
 - Non-bio accumulative
 - Non-mobile
 - Insoluble in water
 - Thermally, chemically & biologically stable
 - \rightarrow Not a SVHC
 - \rightarrow Have a long-lasting history of <u>safe use</u> in the industry in many applications

PTFE – Regulatory Situation

Short and simplified history of regulatory actions on PTFE

- PFOA (*Perfluorooctanoic acid*) recognized as a chemical from the group of PFAS (*Per and Polyfluoro Alkyl Substances*) which is toxic and known as a "forever chemical"
 - Reproductive Toxin and Suspect Carcinogen
 - Resistant to typical degradation processes in the environment
 - Extremely high persistence
- In 2017 EU published and proposed regulations on PFOA, its salts & related substances under Annex XVII of REACH
- Since July 5th, 2022 these restrictions are in place:
 - < 25 ppb for PFOA and its salts
 - < 1000 ppb (1 ppm or 1mg/kg) for one or a combination of PFOA-related substances
- Since H1 2023 same restrictions in place for the sum of C9-C14 PFCA's and PFHxA (C6)
- In parallel the Stockholm Convention added these substances to their list of "POP's" (persistent organic pollutants) making this nearly a global standard (ratified by ~180 countries).

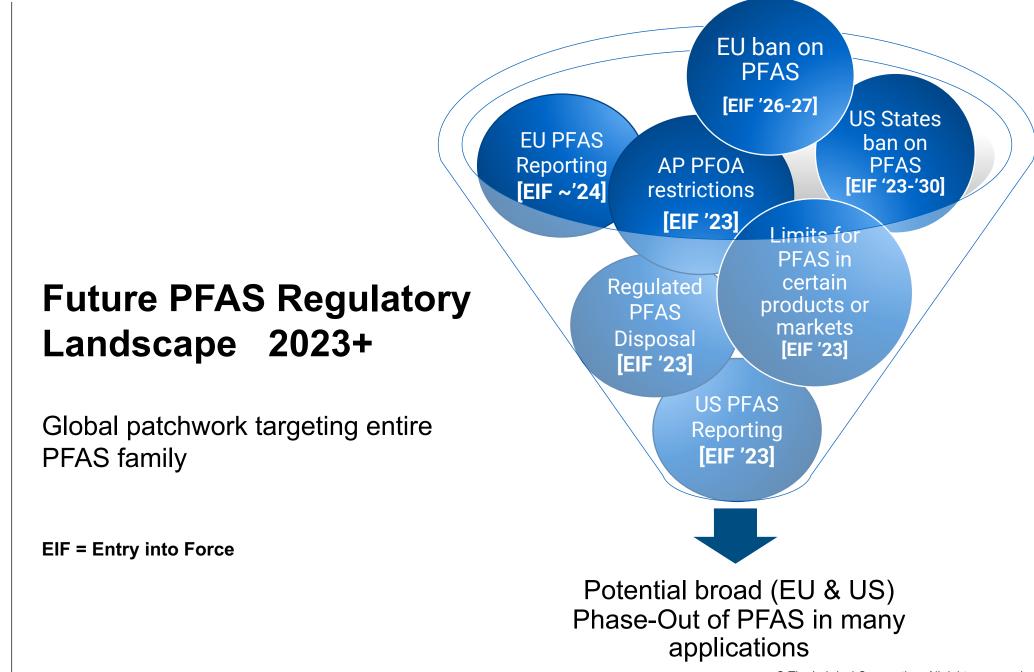
PTFE – Regulatory Situation

Industry reaction on PFOA restrictions

- PTFE manufacturers established post treatment processes to reduce PFOA to the 25 ppb level
- Increased use of PTFE grades based on feedstock which has no detectable (typically <10 ppb) PFOA
 - MW reduction by specific thermal degradation process
 - Purposeful polymerization to low MW
- Transfer to PFOA compliant PTFE is completed in EU countries
- Transfer in countries outside of EU is in different stages

Current Landscape of PFAS Efforts

 Global actions in force today addressing specific PFAS chemicals (e.g., low MW PFAS – PFOA, PFOS, PFHxA (C6 PFCA), C9-C14 PFCA's)


Global efforts to regulate the entire PFAS chemical group is ongoing

- Most strict definition comprises chemistry with "at least one CF2 or CF3 moiety" (e.g., fluoropolymers like PTFE)
- Deviations in scope emerging (e.g., UK seeks to separate fluoropolymers from other concerning PFAS)

Legislative uncertainty exists across U.S. states around scope, definition or practicalities of enforcement.

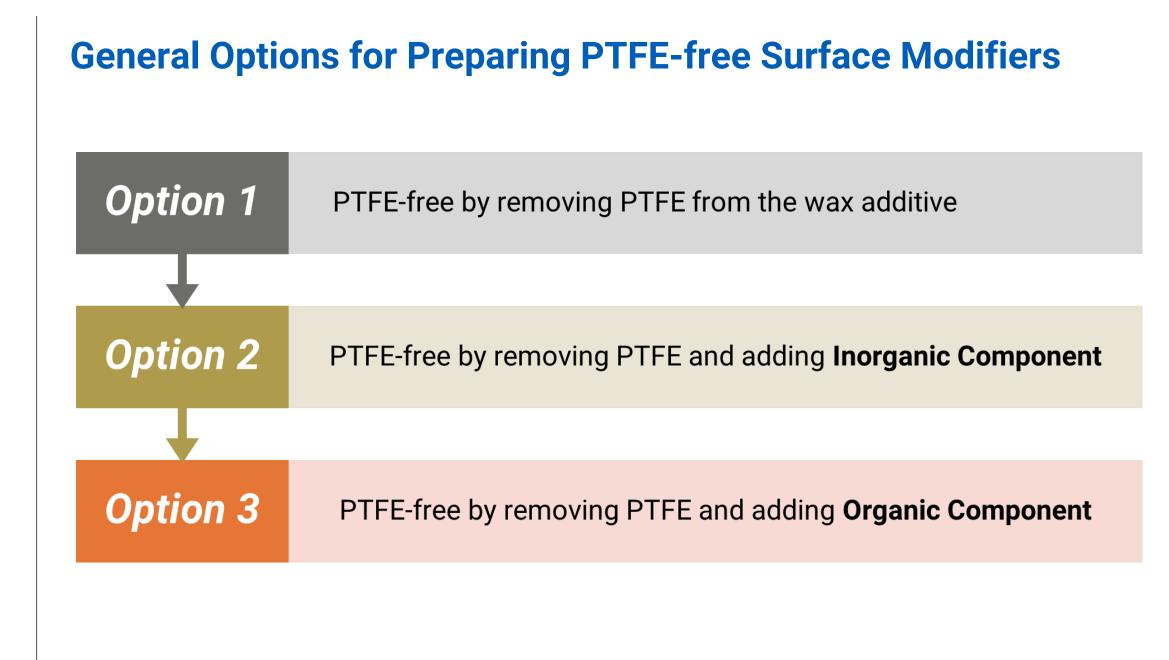
 Voluntary transition to 'PFAS-free' chemistry expected and taking place in various countries and end use applications (e.g., can, inks, powder, metals)

Global Impact

Withdrawals of certain PTFE raw materials

Price increases

Potential shortages

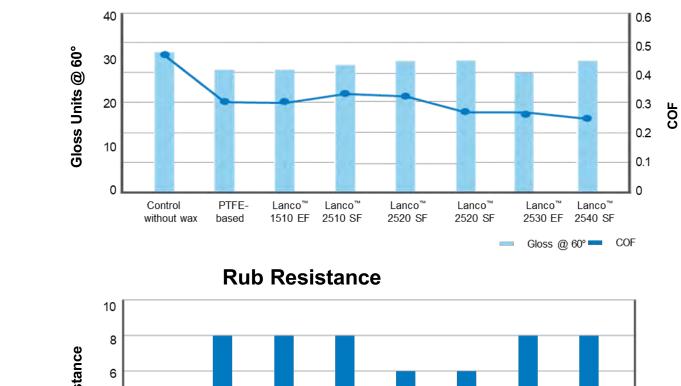


Shifting from PTFE containing additives

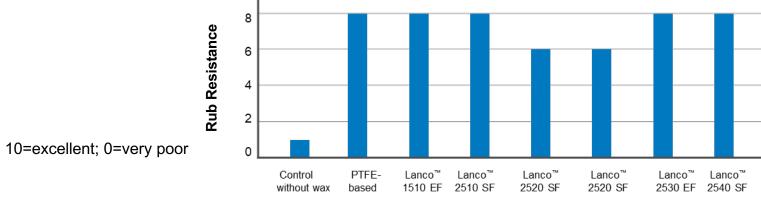
Lubrizol PTFE-Alternatives in Coatings

PTFE-free	Product Name	Polymer Type	Particle Size Dv50 (μm)	Melting Point °C
alternative	Lanco™ 1510 SF	Modified polyolefin wax	≤ 6	106
products	Lanco™ 1510 EF	Modified polyolefin wax	≤ 5	106
	Lanco™ 2510 SF Inorganically modified polyolefin wax		≤ 6	105
Micronized	Lanco™ 2520 SF	Inorganically modified polyolefin wax	≤ 6	105
	Lanco™ 2520 EF	Inorganically modified polyolefin wax	≤ 5	105
Waxes	Lanco™ 2530 EF	Organically modified polyolefin wax	≤ 6	116
	Lanco™ 2540 SF	Modified polyolefin wax	≤ 6	128
	Lanco™ 2540 EF	Modified polyolefin wax	≤ 5.2	128
	Lanco™ 2541 SF	Modified polyolefin wax	≤ 6	144

PTFE-free	Product Name	Polymer Type	Solvent	Particle size Dv50 (µm)	Melting point °C
	Lanco™ Glidd 6635	Wax combination	Water, BG	≤ 6	128
alternative products	Lanco™ Glidd 6692	Wax combination	Water, BG (<30%)	≤ 3	106
products	Lanco™ Glidd 7605	Inorganically modified polyolefin wax	Aromatic 100, BG (<30%)	≤ 5	105
	Lanco™ Glidd 7607	Inorganically modified polyolefin wax	Water, BG (<30%)	≤ 6	105
	Lanco™ Glidd 7610	Inorganically mod. carnauba wax	BG	≤ 3.5	82
Wax	Lanco™ Glidd 7612	Inorganically mod. polyolefin wax	Water, BG	≤ 6	106
Dispersions	Lanco™ Glidd 7678	Modified polyolefin wax	BG	≤ 3.5	106
	Lanco™ Glidd 7686	Wax combination	Water, BG (<30%)	≤ 6	128
	Lanco™ Glidd 7721*	Organically modified polyolefin wax	Methoxy propanol	≤ 6	116

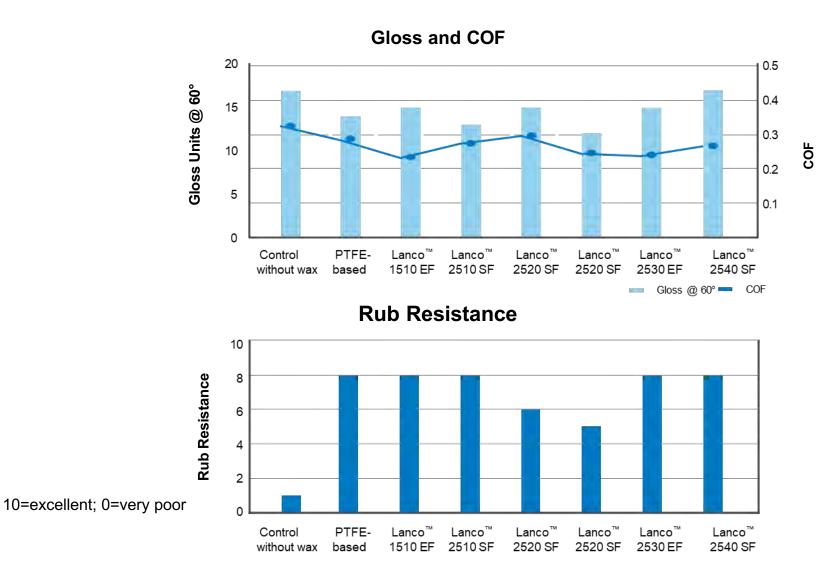


*not fully commercial, yet


Product Performance – Printing Inks

Performance Data in Water Based Ink Acrylate Resin

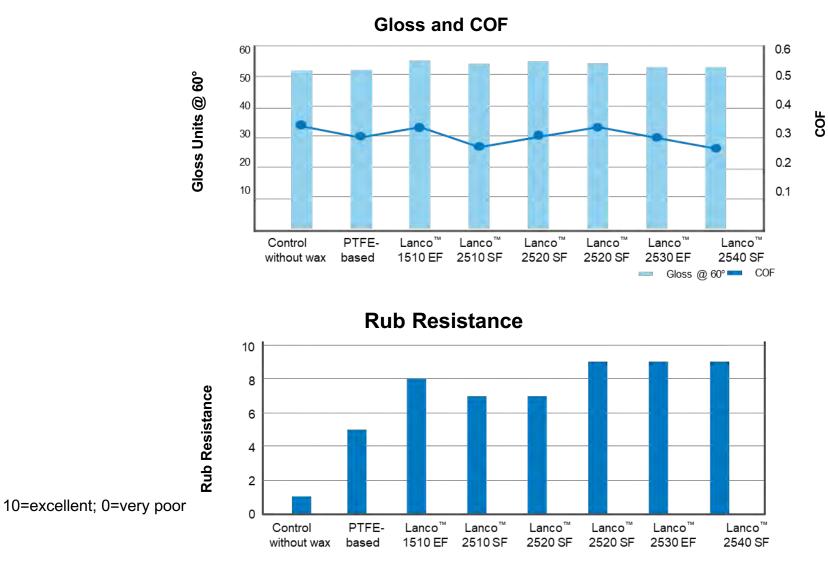
Gloss and COF



2% active content, application on Leneta paper 3NT-31 backside, drying time 24h.

© The Lubrizol Corporation. All rights reserved.

Performance Data in Solvent Based Ink NC Resin

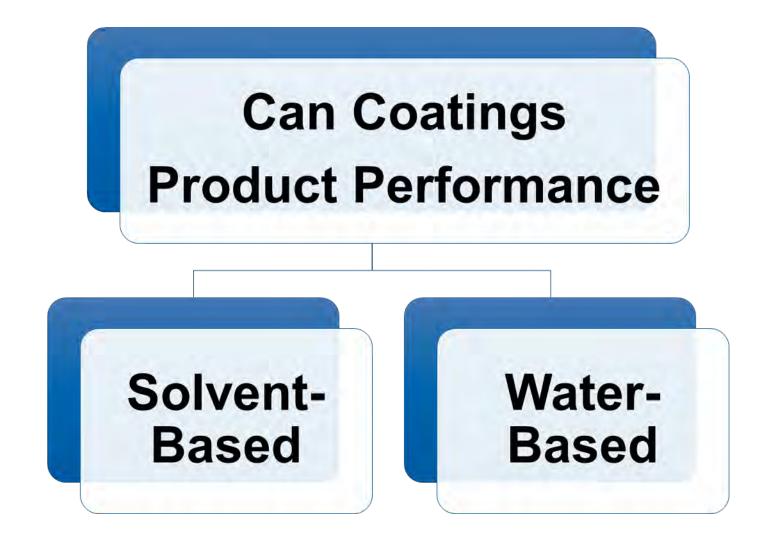


Lubrizol

2% active content, application on Leneta paper 3NT-31 backside, drying time 24h.

© The Lubrizol Corporation. All rights reserved.

Performance Data in UV Ink 100% Acrylate Resin



2% active content, application on Leneta paper 3NT-31 backside, radiation drying.

Product Performance – Can Coatings

Test Systems

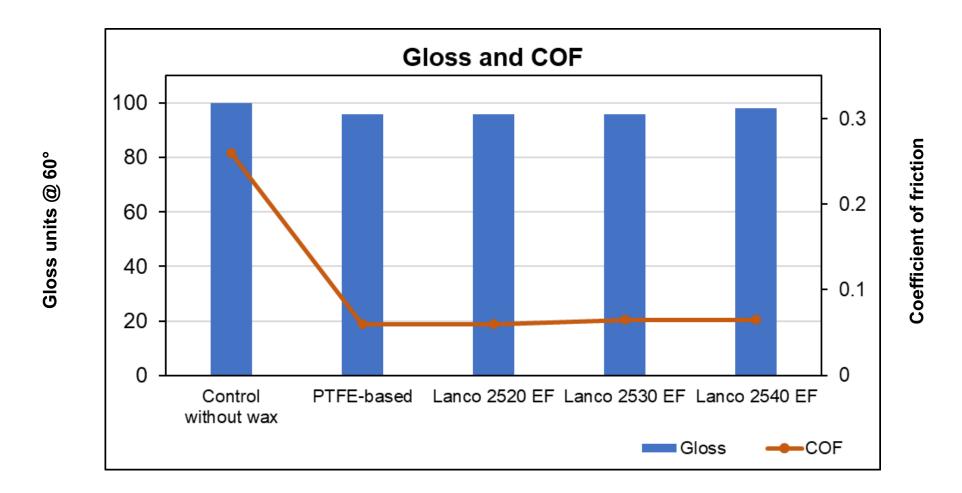
PTFE-FREE ALTERNATIVES

Solvent-Based Polyester Phenolic Gold Lacquer, BPA-NI*

0.5 % active content, 20µm wet film thickness on tin plate, curing conditions 10 min @ 200°C.

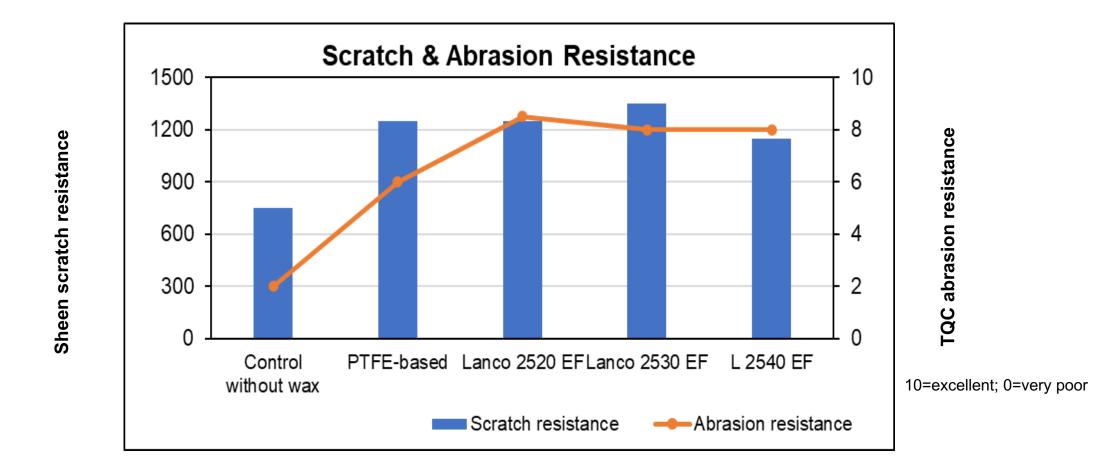
* Bisphenol-A not intentionally added to the composition of this product.

Water-Based Epoxy Phenolic Melamine Gold Lacquer


0.5 % active content, 20µm wet film thickness on tin plate, curing conditions 12 min @ 200°C.

Solvent Based Can Coatings

Performance – SB Polyester Phenolic Gold Lacquer

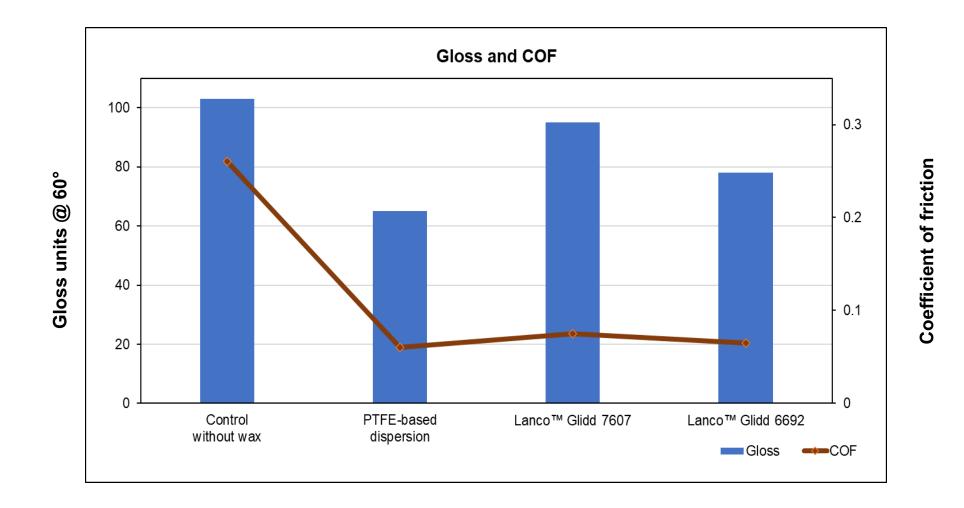


0.5 % active content, 20µm wet film thickness on tin plate, curing conditions 10 min @ 200°C

© The Lubrizol Corporation. All rights reserved.

Performance – SB Polyester Phenolic Gold Lacquer

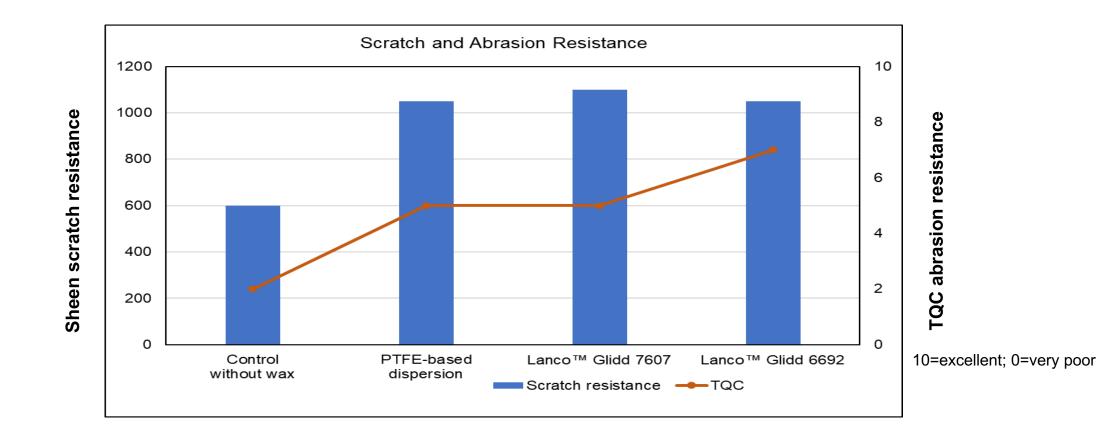
0.5 % active content, 20µm wet film thickness on tin plate, curing conditions 10 min @ 200°C



© The Lubrizol Corporation. All rights reserved.

Water Based Can Coatings

Performance – WB Epoxy Phenolic Melamine Gold Lacquer



0.5 % active content, 20µm wet film thickness on tin plate, curing conditions 12 min @ 200°C

© The Lubrizol Corporation. All rights reserved.

Performance – WB Epoxy Phenolic Melamine Gold Lacquer

0.5 % active content, 20µm wet film thickness on tin plate, curing conditions 12 min @ 200°C

© The Lubrizol Corporation. All rights reserved.

Performance Coatings

The information contained herein is believed to be reliable, but no representations, guarantees or warranties of any kind are made as to its accuracy, suitability for particular applications or the results to be obtained. The information is based on laboratory work with small scale equipment and does not necessarily indicate end product performance. Because of the variations in methods, conditions and equipment used commercially in processing these materials, no warranties or guarantees are made as to the suitability of the products for the applications disclosed. Full-scale testing and end product performance are the responsibility of the user. Lubrizol Advanced Materials, Inc. shall not be liable for and the customer assumes all risk and liability of any use or handling of any material beyond Lubrizol Advanced Materials, Inc.'s direct control. The SELLER MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Nothing contained herein is to be considered as permission, recommendation, nor as an inducement to practice any patented invention without permission of the patent owner.

