

Cooling energy savingswith IR Reflecting pigments

Patricia Perez – CICP Global product manager Pants & Coatings (Milan), October 2025

We bring color, performance and vibrancy to life.

AGENDA

Introduction

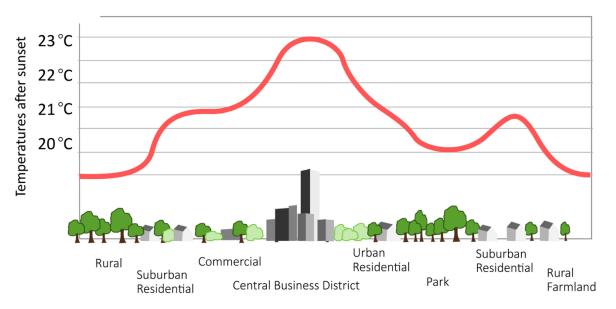
The problem of UHI effect and a cost-effective solution with IR reflecting technology

NIR reflecting color pigments

Cool blacks challenge & non-chrome-based alternative

Impact in real buildings

Energy savings case studies



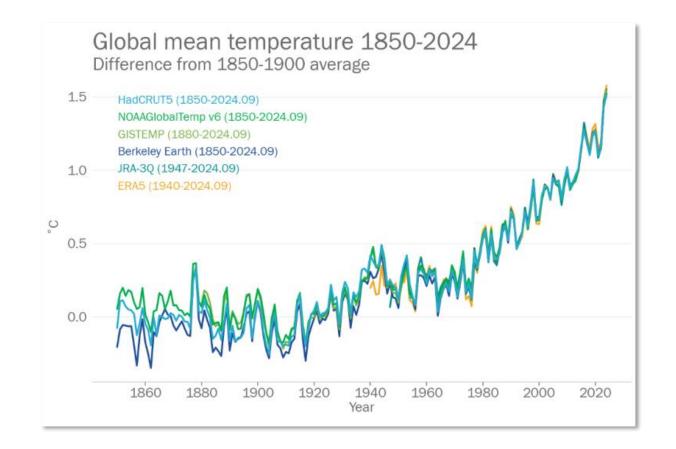
The problem

Growing temperatures in cities due to the Urban Heat Island effect

- An <u>urban heat island</u> is a metropolitan area which is significantly warmer than its surrounding rural areas.
- There is little bare earth and vegetation in urban areas.
 This means that less of the Sun's energy is reflected and that more heat is stored by buildings and the ground in urban than in rural areas.
- Notably, of the roughly 10,000 cities in the world, nearly half faced an increasing trend in heat exposure between 1983 and 2016. For example, recent studies revealed that <u>potential exposure to extreme heat</u> <u>among urban dwellers exceeded 1.7 billion people.</u>

URBAN HEAT ISLAND PROFILE

Sources:

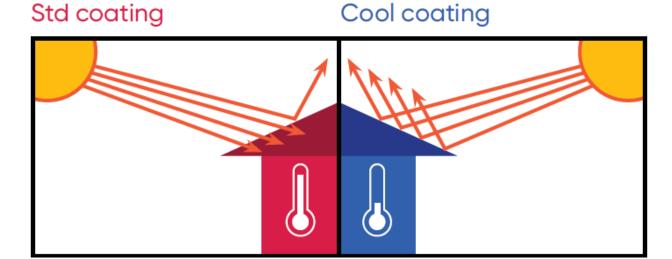

- https://www.metlink.org/fieldwork-resource/urban-heat-island-introduction/
- https://publications.jrc.ec.europa.eu/repository/handle/JRC137891

The problem

Climate change, and energy consumption to stay cool

- Climate change increases heatwaves, becoming more frequent and intense, and projected to continue. Extreme heat is particularly alarming in cities, where it leads to the Urban Heat Island effect.
- AC contributes to substantial energy consumption and CO2 emissions, exacerbating the urban heat island effect. Energy demand for space cooling will more than triple by 2050.
- In response to the Urban Heat Island effect, both mitigation (reducing emissions) and adaptation (increasing overall resilience) actions are needed.

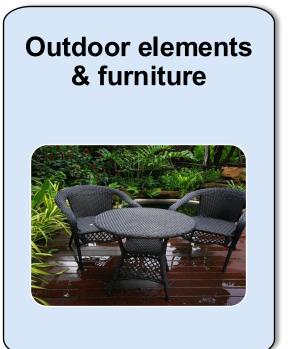
Sources:


- https://wmo.int/news/media-centre/2024-track-be-hottest-year-record-warmingtemporarily-hits-15degc
- · https://www.iea.org/reports/the-future-of-cooling

A cost-effective solution

Infrared reflecting technology "Cool" surfaces

The use of Infrared Reflecting materials reduce surface temperature by decreasing Sun's energy absorption

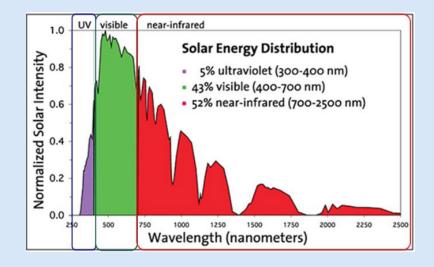


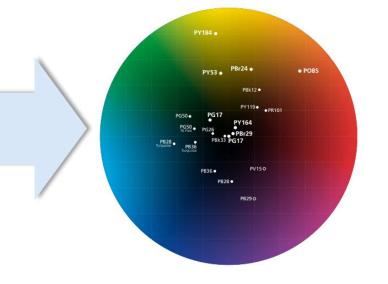
A cost-effective solution

For use in a variety of surfaces

A cost-effective solution

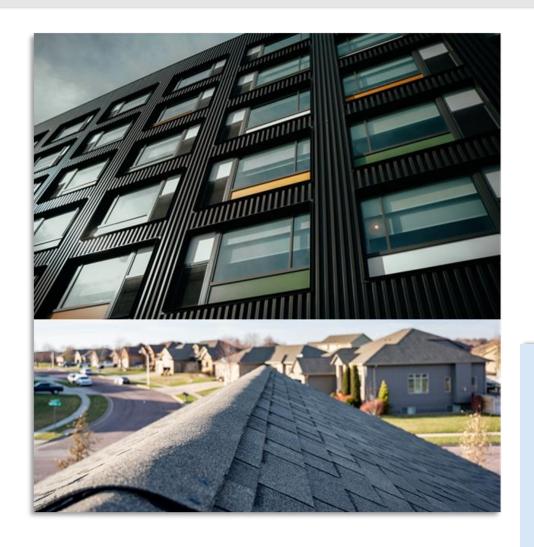
With sustainability contribution

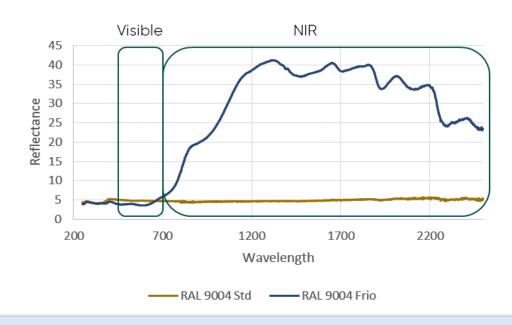

NIR reflecting color pigments



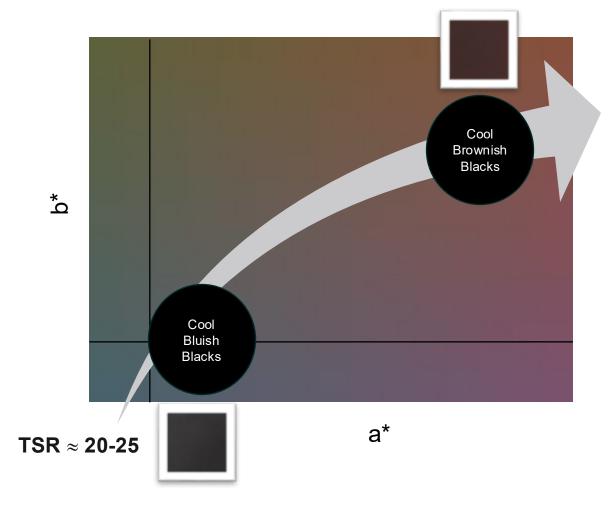
NIR reflecting color pigments

Color pigments absorbs visible, but also NIR


Use of NIR Reflecting pigments



Color space	Color Index	NIR Reflectance		
	PBr29	High		
Black	PG17	High		
	PBk33	Moderate		
	PY164	High		
Brown	PBr24	High		
	PY119	Moderate		
Vallani	PY53	High		
Yellow	PY184	High		
Orange	PO85	High		
Red	PR101	Moderate		
	PG17	High		
Green	PG26	Moderate		
	PG50	Moderate		
	PB28	Moderate		
Blue	PB36	Moderate		
	PB29	Transparent		
Violet	PV15	Transparent		


Dark surfaces can achieve highest surface temperature

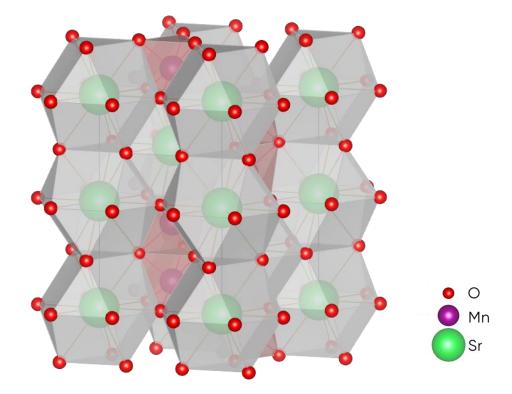
- Carbon Black (PBk 7) and Black Iron Oxide (PBk 11) absorb in all spectrum
- NIR Reflecting Black pigments:
 - PBr 29: Chrome Iron Brown Hematite
 - PG 17: Chromium Green-Black Hematite

Challenge for common cool blacks

TSR ≈ **27-32**

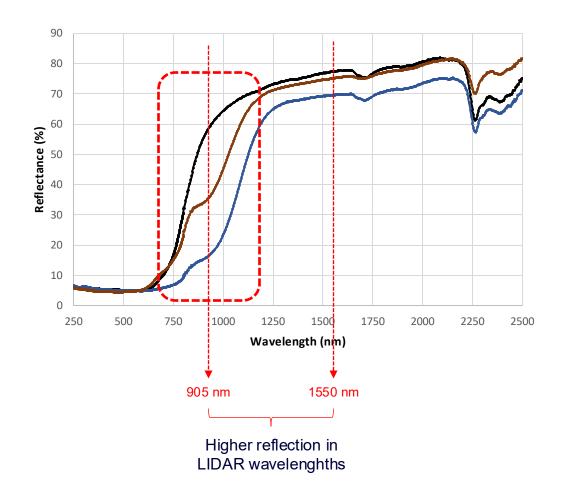
Black NIR Reflecting pigments based on Chrome Iron (PG17/PBr29):

- Highest TSR with brownish shades
- Bluish shades has lower TSR


Challenge: Bluish shades with high TSR

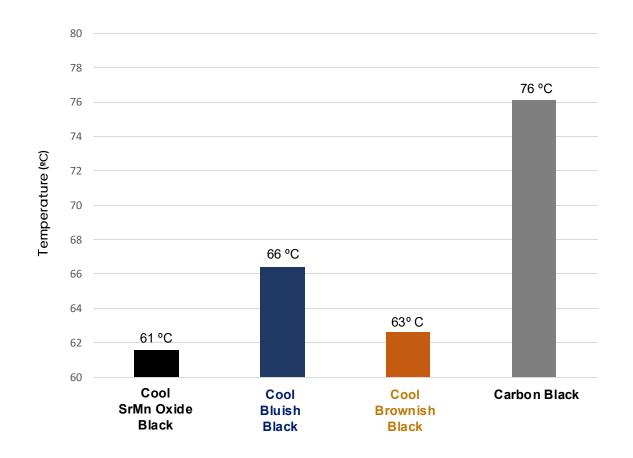
Alternative non-chrome-based pigments

Strontium Manganese oxide (SrMnO₃) "Eclipse Black 372"


- Cr-free inorganic pigment
- CAS nº: 12163-45-0
- Specific gravity: 5,3 g/cm³
- Mean Particle Size: 2 μm
- Oil Absorption: 12 g/100 g

Total Solar Reflectance (TSR)

PVDF Coil coating (Masstone, DFT = 18μ)


Strontium Manganese oxide shows much higher TSR than references Cool Bluish Black and Cool Brownish Black.

	L	TSR	TSR UV	TSR VIS	TSR NIR1	TSR NIR2	TSR NIR3
Cool SrMn Oxide Black	26.8	31.2	0.3	2.8	9.6	10.6	7.9
Cool Bluish Black	26.6	20.2	0.3	2.9	3.1	7.3	6.6
Cool Brownish Black	26.6	27.2	0.2	2.9	6.7	9.5	7.8

Heat Build Up (HBU)

PES coil coating (Masstone, DFT = 25μ)

Strontium Manganese oxide shows the lowest surface temperature vs other Cool Blacks.

It reduces Heat Build Up by:

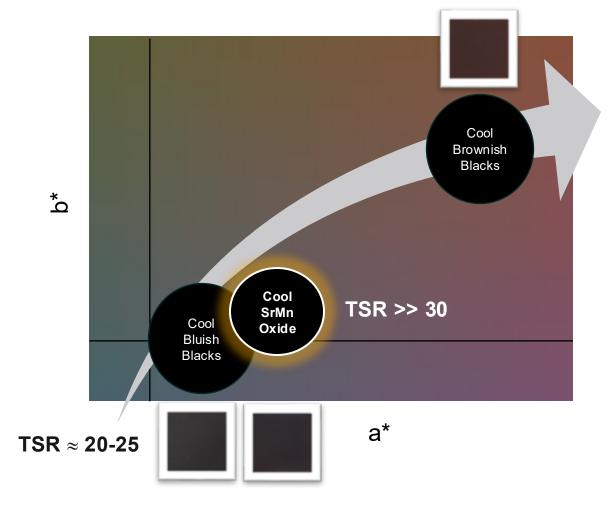
- Approx -5°C vs a benchmark Cool Bluish Black
- Approx -15°C vs Carbon Black.

ASTM D-4803

Heat build-up (HBU) tests are used to measure how much heat a surface absorbs when exposed to an IR lamp, simulating effects caused by sunlight IR absorption.

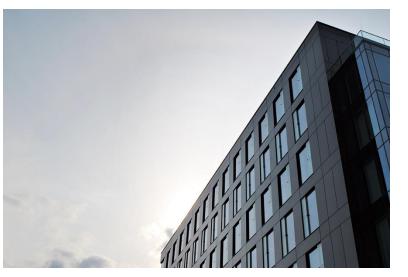
Color Space

PVDF Coil Coating (DFT = 18μ)


Mass Tone	L*(D65)	a*(D65)	b*(D65)	dL*(D65)	da*(D65)	db*(D65)	dE*(D65)
Cool SrMn Oxide Black	26.8	2.0	-0.7				
Cool Bluish Black	26.6	0.8	-0.6	-0.2	-1.2	0.1	1.3
Cool Brownish Black	26.6	4.7	2.5	-0.3	2.7	3.2	4.2

Tint Tone	L*(D65)	a*(D65)	b*(D65)	dL*(D65)	da*(D65)	db*(D65)	dE*(D65)	K/S (%)	Color
Cool SrMn Oxide Black	72.7	-0.7	-2.8					100.0	
Cool Bluish Black	72.7	-1.2	-4.6	0	-0.5	-1.7	1.8	104.1	
Cool Brownish Black	62.5	1.3	-4.0	-10.2	2.0	-1.2	10.5	209.4	

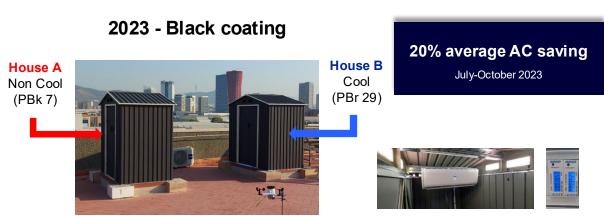
Strontium Manganese oxide solution

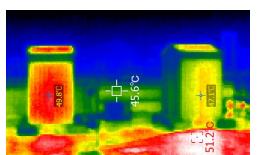

 $\text{TSR}\approx 27\text{-}32$

Strontium Manganese oxide "Eclipse Black 372"

Bluish black pigment with the highest IR reflecting performance in the market

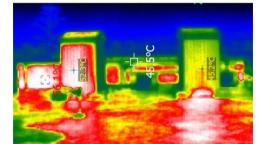
What is the impact in these buildings?





Energy savings case studies – Garden Houses

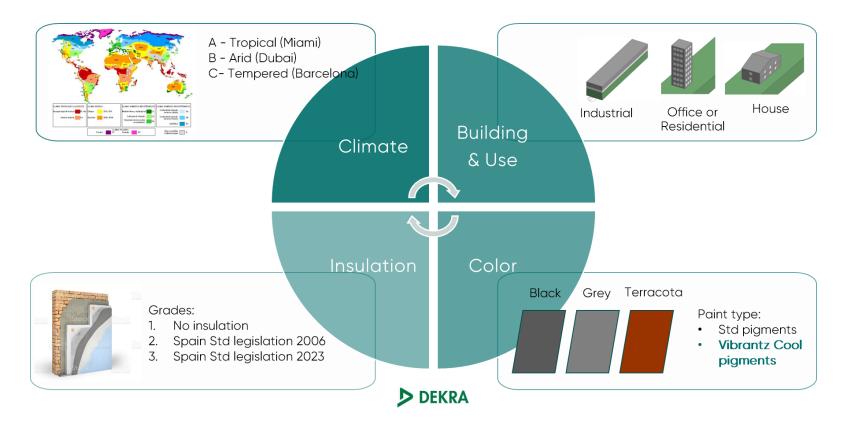
Garden Houses


- "Cool" garden houses experiment in Vibrantz site (Barcelona, Spain)
- AC Energy savings approx 20%

	Set Point	Days	% Savings (kWh)
25/07/2023	27ºC	7	10,92
01/08/2023	27ºC	10	13,83
11/08/2023	27ºC	10	14,49
28/08/2023	27ºC	7	20,41
06/09/2023	27ºC	7	20,73
14/09/2023	27ºC	7	20,30
21/09/2023	27ºC	7	24,20
28/09/2023	27ºC	7	22,38
06/10/2023	27ºC	7	23,59
13/10/2023	27ºC	7	26,04

22% average AC saving

July-October 2024



	Set Point	Days	/0 0a viii.go
	0001 00	,-	(kWh)
27/07/2024	27ºC	7	12,16
03/08/2024	27ºC	7	11,37
10/08/2024	27ºC	7	15,64
17/08/2024	27ºC	7	19,46
24/08/2024	27ºC	7	19,08
31/08/2024	27ºC	7	21,74
07/09/2024	27ºC	7	24,89
14/09/2024	27ºC	7	24,73
21/09/2024	27ºC	7	24,45
29/09/2024	27ºC	7	28,31
06/10/2024	27ºC	7	27,41
13/10/2024	27ºC	7	29,50

Computer modeling simulation

 Computer modeling simulating AC energy savings of real buildings painted with "cool" colors in different conditions: climates, type of building, grades of insulations and colors.

Computer modeling simulation

• Link: Cool Colors - Vibrantz Technologies

Computer modeling simulation

Example simulation 1

Example simulation 2

Computer modeling simulation

Next steps

- Extended range of colors linked to Tinting System Software
- Energy savings calculations for Roofs and/or Façades
- Other climate zones

NCS S 5040-Y80R

NCS S 5030-Y60R

NCS S 5020-Y30R

SUMMARY

- In response to the Urban Heat Island effect, both mitigation (reducing emissions) and adaptation (increasing overall resilience) actions are needed
- The use of IR Reflecting materials reduce surface temperature, and this technology can be used in asphalt, architectural roofs & façades and outdoor elements
- The challenge in the Cool Black space is to reach the highest IR reflectance with the highest bluish shade, and the alternative Cr-free pigment "Eclipse Black 372" can be the solution
- New energy savings studies carried out in a "garden houses" experiment and in a computer modelling simulations by using IRR "cool" paints, showed significant reduction of the AC energy demand up to >20%

