Cooling energy savings from high reflective coatings using Omyasphere, hollow microspheres

Milano, Italy | October 8th, 2025

David Gonzalez Amago
Director Global Business Development – Lightweight Fillers
david.gonzalezamago@omya.com

Agenda

- 1. Challenge and Solution
- 2. Microspheres / Lightweight Fillers Overview
- 3. Omyasphere 900 series: Hollow Glass Microspheres
- 4. Case Study: High Reflective Coating
- 5. Summary

Heat Build-up and Energy Consumption

In most countries, energy usage in the building sector represents almost **one-third of the total energy** consumption.

In many developed countries, the residential building sector accounts for more than half of the electricity consumption.

In warm areas, air conditioning accounts for up to 60% of residential energy use.

The demand for residential cooling, and consequently the required energy, is expected to increase significantly as a result of global warming phenomena.

Countries located in tropical or sub-tropical zones are already concerned with **increasing energy cost**, lately it's also becoming a pronounced issue in temperate zones.

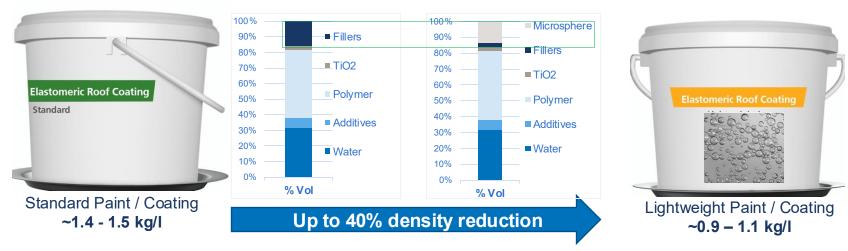
Challenge & Solution

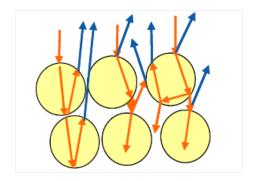
How To Overcome The Heat Build-Up?

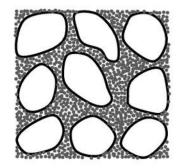
Over the past few years, **highly reflective coatings** have received increasing attention thanks to their contribution to the reduction of overall **heat transmission**, enhancing "comfort properties".

The working principle of reflective coatings is mainly based on **high solar reflectance** using **TiO**₂ and **engineered mineral fillers (e.g. calcium carbonate)** with high purity, optical properties and tailored PSD.

Recently, the use of **lightweight fillers / microspheres** is increasing due to their positive impact in additional properties (e.g., **thermal conductivity, diffusivity, emissivity)**, enhancing the insulating properties of the coating and leading to **cooling energy savings.**

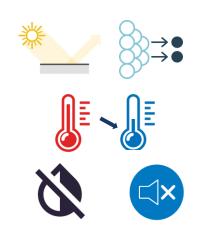

In addition to enhancing thermal insulating properties, lightweight fillers / microspheres can match current market needs calling for **weight reduction**, **higher elongation**, **reducing weathering** and extending **service life** and overall improving the **sustainability** of coatings.

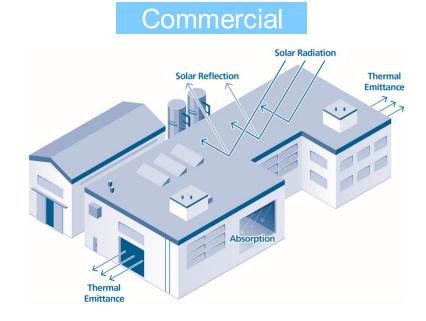

Challenge & Solution


Mechanism of Microspheres / Lightweight Fillers to Enhance Insulating Properties

Partial replacement (by volume) of mineral filler by Lightweight Fillers / Microspheres

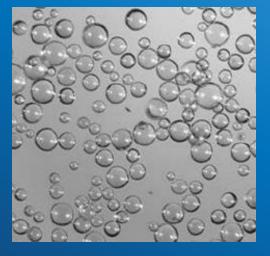
- Hollow Microspheres reduce the thermal conductivity and help to reflect solar radiation
- Due to its low surface area, higher raw materials efficiency, allowing for formulation optimization




Challenge & Solution

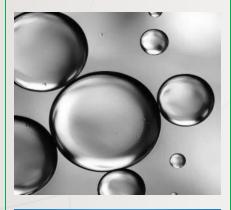
Where can Microspheres be Used for Improving Comfort Properties?

The use of lightweight fillers / microspheres improves overall comfort properties (solar reflectance, thermal conductivity, emittance, diffusivity, acoustic, anti-condensation)



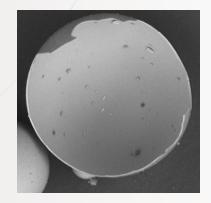
Microspheres / Lightweight Fillers Overview

66

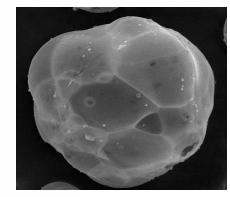


Microspheres / Lightweight Fillers Overview

Main Lightweight Fillers


- True Density or Effective Particle Density <1 g/cc
- Hollow Structure, Microsphere
- Lightweighting and Insulating as main Function intended

Hollow Glass


Omyasphere 900 Series

Cenospheres

Expanded Glass

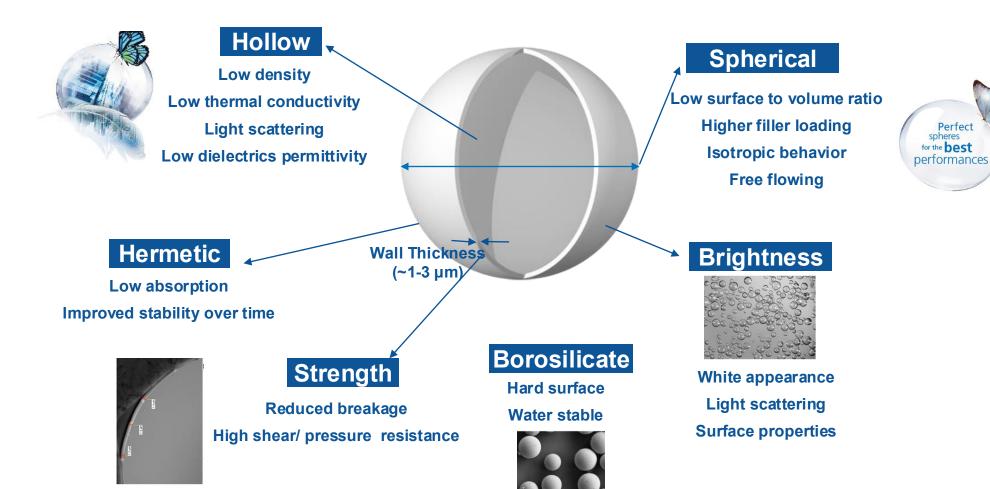
Omyasphere 200 Series

Omyasphere 400 Series Higher Resistance

Closed-Cell **Expanded Perlite**

Polymeric

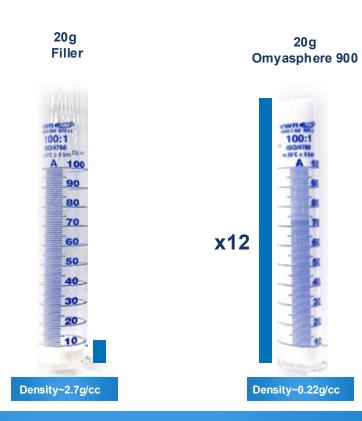
Omyasphere 900 Series


66

Hollow Glass Microspheres

Omyasphere 900 series

Key Attributes and Benefits



Omyasphere 900 series

Approaching LWF by volume rather than by weight. Density makes the difference...

Filler	Density [g/cc]
Barium Sulfate	4.5
Titanium Dioxide	4.2
Talc	2.8
Calcium Carbonate	2.7
Ceramic Microspheres	2.5
Cenospheres	<0.95
Expanded Glass	<0.8

LWF Density – Volume Approach

LWF comparison on a volume basis, not by weight. Replacement on a weight basis will lead to formulation issues (oversaturating the system)

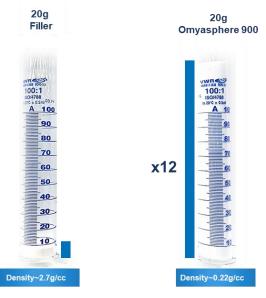
Omyasphere 900 series

Portfolio for Construction Applications

* PROPERTIES				PRIMARY CONSTRUCTION APPLICATIONS							
Applications	True Density [g/cm³]	Compressive Strength [MPa/Psi]	D50 [µm]	D90 [µm]	Spackles Putties Smoothing compounds	Acrylic Plasters	Comfort Paints / Anti- condensation Paints / Acoustic Paints	Thermal insulating Paints	Deco Paints	Elastomeric Roof Coatings	Adhesive & Sealants
Omyasphere 915 - CNZ	0.15	4 / 500	85	120	✓	✓	✓	✓			
Omyasphere 920 - CNZ	0.2	4 / 500	65	110	✓	✓	✓	✓			
Omyasphere 925 - CNZ	0.25	5 / 750	65	100	✓	✓	✓	✓			
Omyasphere 938 - CNZ	0.38	38 / 5500	40	65				√ #	√#	√#	✓
Omyasphere 922 S - CNZ	0.22	8 / 1200	45	70	√#	√#	√#	√#	√#	√#	✓
Omyasphere 928 S - CNZ	0.28	28 / 4000	45	65	√#	√#	√#	√#	√#	√#	✓
Omyasphere 938 S - CNZ	0.38	38 / 5500	30	50				√#	√#	√#	✓
Omyasphere 942 S - CNZ	0.42	55 / 8000	25	40				√#	√ #	√#	✓

^{*} Typical values - no specs

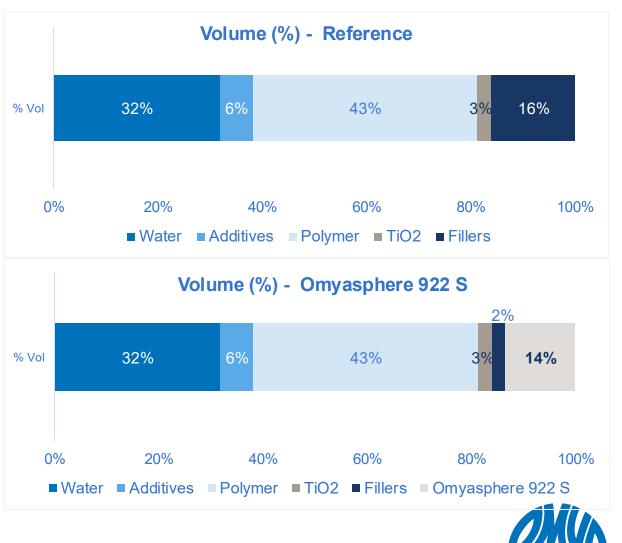
"


Case Study:
High Reflective
Coatings / Cool
Roof

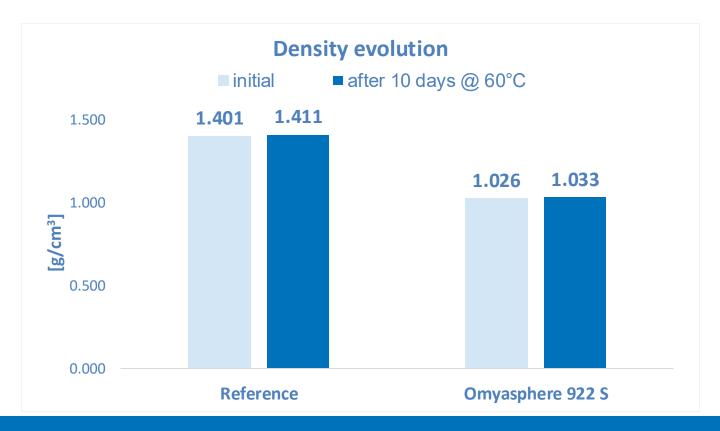
Omyasphere 900 Selection

Product selected for this application/ case study: Omyasphere 922S

	True Density [g/cm³]	Compressive Strength [MPa/Psi]	D50 [μm]	D90 [μm]
Omyasphere 922 S	0.22	8 / 1200	45	70

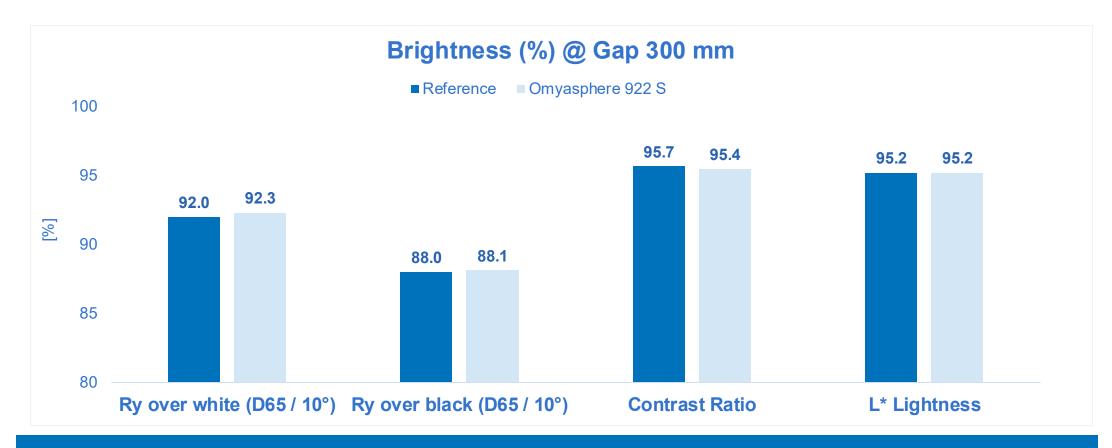


- Suitable for spraying operations
- Loading of Omyasphere 922S ~ 2.9% by weight, replacing mineral filler on the volume basis
- ~12 times lower density (0.22 g/cm³) vs mineral fillers (2.7 g/cm³)!
- Omyasphere selection can vary depending if any existing microspheres, film thickness...

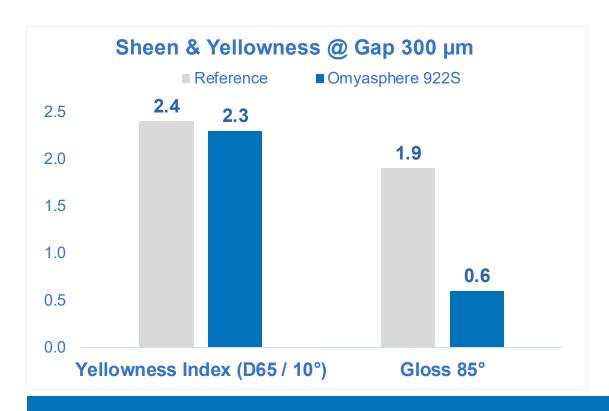


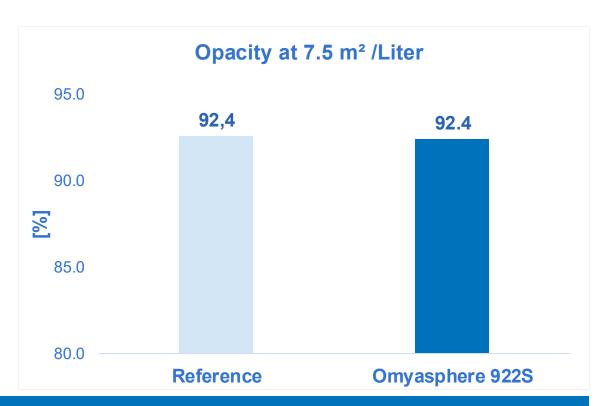
Formulation

	Reference	Omyasphere 922 S
Water deionised	23,09	30,58
Dispersant Agent	0,40	0,53
Dispersant Agent	0,29	0,38
pH regulator	0,08	0,11
Rheology modifier	0,41	0,54
Defoarmer	0,11	0,14
Coalescent Agent	0,58	0,77
Propylenglycol	2,02	2,67
Omyacarb 10 - GU	28,90	3,03
Optiwhite	2,44	3,23
TiO ₂	8,15	10,79
Pure Acrylic Emulsion	32,79	43,39
Biocide	0,18	0,23
Omyasphere 922S	-	2,9
Defoamer	0,16	0,18
Rheology Modifier	0,40	0,53
Total (%)	100,00	100,00
Density (g/cc)	1,40	1,05
PVC (%)	46	46


Density

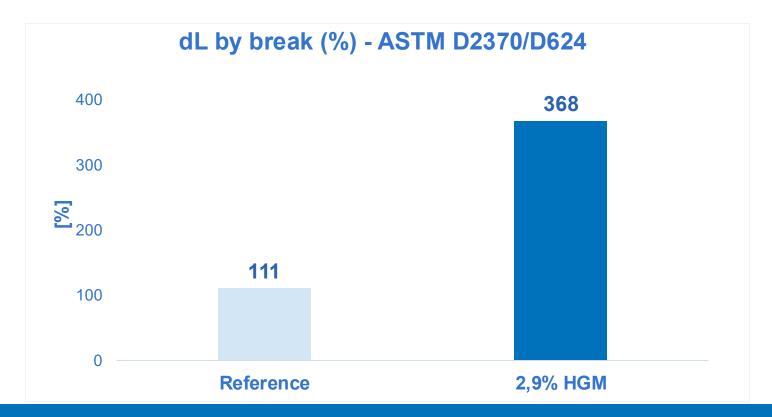
Omyasphere leads to ~26% density reduction vs reference formulation



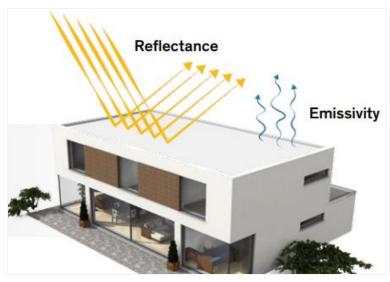

Optical Properties (I)

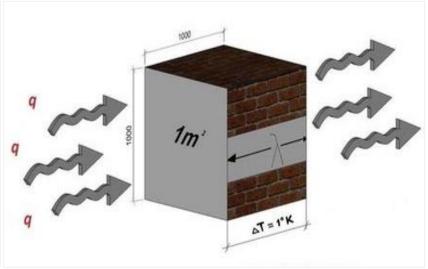
Omyasphere leads to equivalent Ry, Lightness and Contrast vs reference formulation

Optical Properties (II)



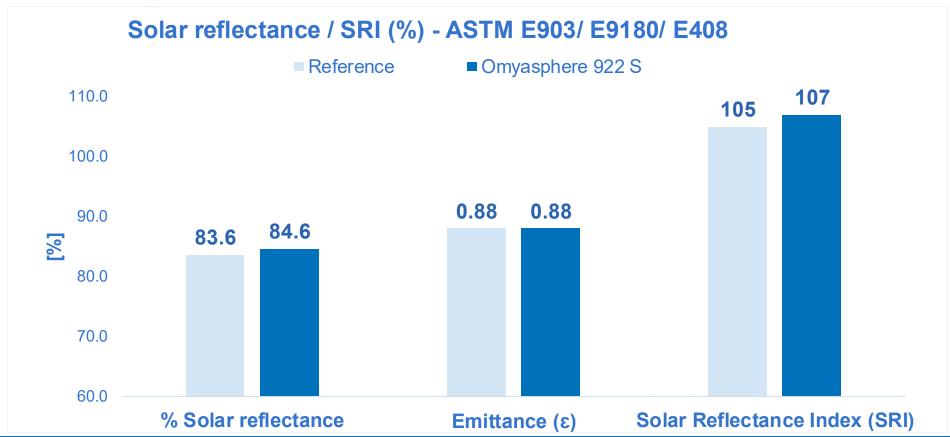
Omyasphere leads to equivalent YI, Opacity and lower sheen vs reference formulation


Elongation



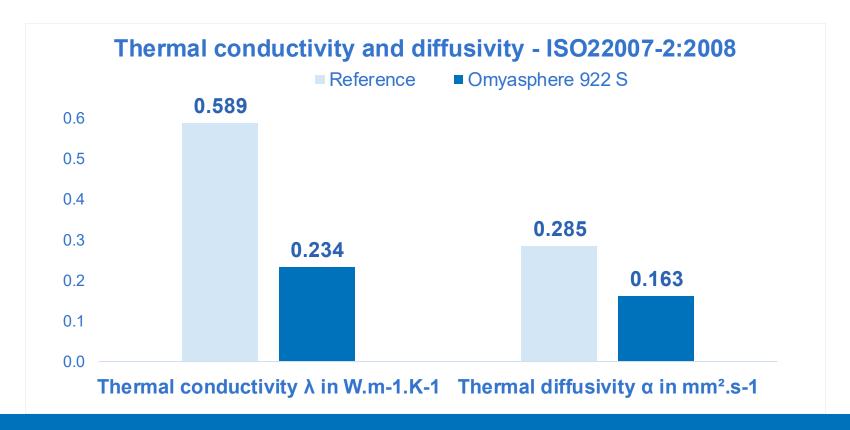
Omyasphere leads to higher elongation resistance vs reference formulation

Mechanism for Cooling Energy Saving

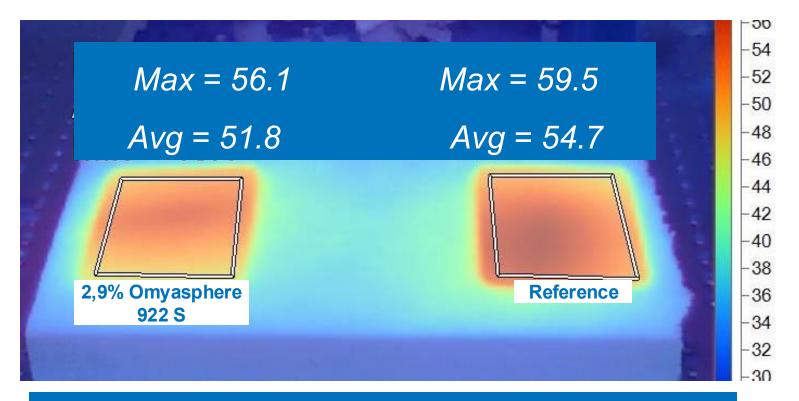

Reflectance (R) and **Emissivity (ε)**

Thermal Conductivity (λ) Thermal Diffusivity (α)

- **Reflectance**: fraction of solar energy reflected
- > **Emittance**: relative ability of the roof surface to radiate absorbed heat
- Thermal Conductivity: Capacity of the material to transfer heat


Solar Reflectivity Index

Omyasphere leads to higher SRI (Solar Reflectivity Index) vs reference formulation



Thermal Conductivity

Omyasphere leads to enhanced thermal conductivity reducing lambda (λ) vs reference

Heat Build-up

Omyasphere leads to lower heat build up

Higher reflectivity leads to lower surface coating temperatures.

Lower Thermal conductivity leads to lower room T^a buildup and cooling savings.

**According to energy experts, a room temperature reduced by only 1°C offers up to 5 % savings in energy cost

Summary

Summary

Summary

Omyasphere 900 hollow glass microspheres lead to tangible savings:

Weight Reduction → Safer handling, easier application, less transportation

Yield Improvement → Doing more with less

Higher flexibility, Reduced ageing

Extending service life

Enhanced SRI and thermal conductivity — Cooling energy savings

Omyasphere improving key Megatrends: lightweighting, extending service life, enhancing comfort properties and improving overall sustainability

Make Your Life Easier with Omyasphere: LWF solutions

Visit our Website for **Lightweight Fillers:** lightweightfillers.omya.com

Schedule a tailor-made lightweight filler webinar: https://lightweightwebinars.omya.com/

Get in Contact for technical questions:

David Gonzalez Amago Director Global Business Development Lightweight Fillers david.gonzalezamago@omya.com +34 672 310 807

