

Sustainable aerogel for high performance coating solutions

An introduction to aerogels, the Quartzene platform and functionality

Next Generation Aerogel

What are Aerogels

- The worlds lightest solids usually 95-99% air by volume
- Silica aerogels most common
- Super insulators low thermal conductivity
- Low density usually > 0,02 g/cm3 (0,001-0,5 g/cm3)
- Large internal surface
- Predominantly nano & mesoporous pores <100 nm (meso: 2-50 nm)</p>
- Amorphous
- ✓ Inert
- Non-combustible
- Non-hazardous

Quartzene – a performance additive

 Quartzene is a precipitated amorphous aerogel-like silicate material which is used to bring or enhance special functionality to various materials and products.

 Quartzene is manufactured in a patented waterborne process using commodity type of silica source thus opening up to a broader market than classic aerogels due to its better cost performance.

Quartzene: A green and cost-efficient product & process

The challenge for the traditional Aerogel Industry:

Expensive starting materials + Energy demanding production process \rightarrow Too expensive for mass market

Quartzene is the solution: silica + water + district heating from nearby industries Scalable manufacturing process & modular production

The Svenska Aerogel Process

- Ambient pressure drying technique
- Earth abundant silica source
- Water based

The Conventional Process

- Supercritical drying technique
- Expensive silica source
- Solvent based

Quartzene: 124k magnification by SEM (Scanning Electron Microscopy)

- A dendritic microstructure in which
 spherical particles are fused together
 into clusters.
- These clusters form a three-dimensional highly porous structure of almost fractal chains or "agglomerate" with pores under 100 nm. The average size and density of the pores can be controlled during the manufacturing process.

Thermal conductivity: The theory behind heat transfer

Convection: heat is transferred by mass movement of a fluid (gas or liquid)

+ Quartzene prevents net gas movement through the lattice

Conductivity: heat is directly transferred by the material without mass movement

+ Quartzene is mostly composed of insulating gas, silica aerogels are especially good since silica is a poor heat conductor

Radiation: Energy transmitted by means of electromagnetic waves

+ Quartzene absorbs IR radiation and slows down the heat transfer in the material matrix

electromagnetic waves, including light

heat transfer in the

💙 SVENSKA AEROGEL

Nano-sized pores – the key to the aerogel properties: The Knudsen Effect

Quartzene has a pore-size less than 70 nm, restricting the air molecules to move and collide. This limits heat transfer to a minimum

The **mean free path** of air is the average distance travelled before collision with another air molecule.

When the pore size is less than 70 nm, the air molecules, at atmospheric pressure, are more likely to collide with the pore walls rather than with one another which reduces the thermal conductivity,

For good insulation: the pore size should be smaller than the free mean path for the air molecules.

Nano-sized pores – the key to the aerogel properties: The Knudsen Effect

Quartzene has a pore-size less than 70 nm, restricting the air molecules to move and collide. This limits heat transfer to a minimum

Next Generation Aerogel

To summarize:

The nano and mesoporous aerogel structure with very little solid material together with the intrinsic low heat transfer of silicate is the key to the thermal insulating properties.

Key specifications of the different Quartzene products

Quartzene	Z1	Z2TP	Z1H1	Z2H1TP	
Chemistry	Silicon dioxide	Silicon dioxide	Silicon dioxide, methylated	Silicon dioxide, methylated	
Polarity	Hydrophilic	Hydrophilic	Hydrophobic	Hydrophobic	
Tapped Density (kg/dm ³)	0.05-0.10	0.08-0.11	0.12-0.16	0.16	
Surface area, S _{BET} (m ² /g)	400-550	>300	400-550	>200	
Particle size (µm)	1-20	1-70	1-20	1-70	
Pore size (nm)	1-50	7 (average)	5 (average)	5 (average)	
Thermal conductivity λ (W/m·K)	0,025-0,030	0,026-0,030	0,025-0,030	0,026-0,030	

Next Generation Aerogel

Thermal conductivity of materials and coatings

Sustainable chemistry

Nano-porosity + surface area + surface character

Property of Quartzene:

- Low thermal conductivity
- Porous
- Fire resistant
- Low density
- Hydrophilic/hydrophobic
- Large surface area

Functionality:

- High thermal insulation
- Acoustic insulation
- Fire resistance
- Reduced weight
- Absorbs gases and liquids
- Changes rheology

Benefit:

- Improved performance
- Material & energy efficiency
- Comfort
- Safety
- Reduced fuel
 consumption
- Replace petroleum products
- Clean air & water
- Shorter drying time etc.
- 💙 SVENSKA AEROGEL

Next Generation Aerogel

Target Markets

Building & construction

- Iightweight cement/concrete
- thermal insulating concrete
- fire resistant concrete
- fire resistant coating
- thermal insulating paints and plasters
- ✓ cool roof
- thermal insulation sealants
- thermal insulation PUR/PIR

Process Industries

- ✓ safe touch
- corrosion under insulation
- anti-condensation
- district heating/cooling insulation
- molecular absorption
- thermal blankets

Transportation

- thermal and acoustic insulation coatings
- panels and composites
- protection against thermal runway
- ✓ thermal blankets

Pulp & Paper

- thermal and acoustic insulation coatings
- ▼ barrier coating for paper
- lightweight paperboard and carton
- high resolution printing

Technical textiles

 thermal insulation - through impregnation or coating of woven & non-woven fabrics

Cool Roof Coatings

- Expensive IR reflective pigments are commonly used for cool roof coatings
- These types of system only provide protection from heat from the direct sunlight
- Replacing part (or all) of these pigments with Quartzene improves the overall insulation property of the coatings
- Additionally, the low heat conductivity of Quartzene will help to keep the cold or heat inside the building - saving cost on central heating or air conditioning
- Furthermore, Quartzene brings opacity and tinting strength to the system, improving the brightness and hiding power of the coating as well as reducing delamination

Cool Roof Coating – acrylic co-polymer with Quartzene and/or TiO2

Quartzene limits the heat transfer through the binder to the substrate by two mechanisms: low thermal conductivity and the Knudsen effect (low convection).

Cool Roof Coating – acrylic co-polymer with Quartzene and/or TiO2

Back temperature of metal substrate after IR heating

Titolo asse

▲ Back temperature 5 min (°C) ■ Back temperature 10 min (°C)

Insulating Coating – acrylic with and without Quartzene and TiO2

August - Central Europe

1 mm acrylic coating coating on metal surface with TiO2 + Quartzene (blue) and without (red)

10°C reduction in surface temperature during peak temperature

Time shift in heating visible

Delamination test at 500° - acrylic co-polymer on metal substrate

Pure resin	Resin + 11,2 %-wt Qz	Resin + 11,2 %-wt Qz	Resin + 11,2 %-wt Qz	Resin + 10%-wt TiO2
2,0mm	2,0mm	2 <i>,</i> 8mm	6 <i>,</i> 0mm	2,7mm
~10 min	~10 min	~10 min	>30 min	~10 min

In conclusion:

- ▼ A cool roof resin typically absorbs part of the IR radiation, and either reflects or transmits the other part
- Quartzene absorbs IR light but due to its excellent thermal performance it acts insulating in a cool roof coating
- ▼ TiO2 reflects IR light to a certain degree, which is complementary to the Quartzene properties
- TiO2 alone is not sufficient to have an insulating coating, its thermal conductivity is ~4,8 W/mK, compared to that of Quartzene at 0,025-0,030 W/mK
- An increased coating thickness will perform better but there is a synergy when adding Quartzene and TiO2 together and therefore a thinner coating can be applied with the same effect or better!
- Delamination processes is decelerated by the presence of Quartzene, thanks to its heat absorption properties

Quartzene in resins, working temperatures and applications

Quartzene Example starting formula – wb acrylic for cool roof

STARTING FORMULA WATERBORNE COATING FOR THERMAL INSULATION

					Density			Solids		
Raw material	Function	Weight %	Weight %	Component	g/ml	Volume	Solids weight	volume	Supplier	Procedure
Water	Diluent	39,26	39,26	Water	1	39,26			Tap or deionized	
NaOH 10%/water To increase pH:9	0.55	0,05	NaOH	2,1	0,02	0,05	0,02			
	pH:9	0,00	0,5	Water	1	0,50				
VISCOATEX 46 Thickener	Thickener	0.68	0,22	(1)	1,19	0,18	0,22	0,18	COATEX	Simple agitation by hand for mixture
	makener	0,00	0,46	Water	1	0,46				
HMPNa	Chelating & dispersing agent	0,11	0,11	HMPNa	2,484	0,04	0,11	0,04		
ACTICIDE MBS	Biocide	0,22	0,22	Water	1,03	0,21			THOR	I I
TECO FOAMEX 30 Anti-f	Anti-foam	nti-foam 0.98	0,2	(2)	1	0,20	0,2	0,20	EVONIK	-
TEGO TOANEX 30	And Ioani	0,50	0,78	Water	1	0,78				
TiO2 KRONOS 2190	Pigment	3,27	3,27	TiO2	4,1	0,80	3,27	0,80	KRONOS	High shear @4000 rpm for dispersion
CHP 517	Binder	42,42	25,46	(3)	1,1	23,15	25,46	23,15	CH POLYMER	Correct agitation @ 500 rpm for mixture
			16,96	Water	1	16,96				
QZ1H1	Thermo insulating filler	12,51	12,51	QZ1H1	0,1	125,10	12,51	125,10	SVENSKA AEROGEL AB	(4)
TOTAL		100,00	100			207,67	41,82	149,50		
					-	-				-

Density g/cm3	0,50
Solid content weight g	41,82
Solid content volume cm3	149,50
QZ1H1 volume in dry film %	83,68

Anionic acrylic copolymer emulsion @32% d:1,06

(2) Organo-modified polysiloxane & fumed silica @20%

(3) Styrene acrylic copolymer dispersion/anionic emulsifier @60% d:1,06

(4) First low shear agitation @500-600 rpm to start dispersion without loss of powder.

When all powder is added, increase shear rate up to 1000-1500 rpm. If needed, improve proper wetting of all powder by moving stirrer blade up and down.

Thank you for listening!

Contraction of the second

Please visit our website: https://www.aerogel.se/

Sara Wengström, M.Sc.Eng. Account Manager – Distribution Business Development sara.wengstrom@aerogel.se +46(0)733370095

